精英家教網 > 高中數學 > 題目詳情
8.“?x∈[1,2],x2-a≥0“是真命題,則實數a的最大值為1.

分析 根據全稱命題的含義:“?x∈[1,2],x2-a≥0“是真命題?x∈[1,2]時,x2-a≥0恒成立?a≤(x2min

解答 解:“?x∈[1,2],x2-a≥0“是真命題?x∈[1,2]時,x2-a≥0恒成立?a≤(x2min,又∵x∈[1,2]時(x2min=1,∴a≤1,則實數a的最大值為1
故答案為:1.

點評 本題考查了全稱命題的本質含義,轉化思想是關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.用二分法研究函數f(x)=x3-2x-1的理念時,若零點所在的初始區(qū)間為(1,2),則下一個有解區(qū)間為(  )
A.(1,2)B.(1.75,2)C.(1.5,2)D.(1,1.5)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.△ABC兩個頂點A、B的坐標分別是(-1,0)、(1,0),邊AC、BC所在直線的斜率之積是-4.
(1)求頂點C的軌跡方程;
(2)求直線2x-y+1=0被此曲線截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,且2bcosC-3ccosB=a,則tan(B-C)的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知集合A={x|(x+2)(x-3)<0},則A∩N(N為自然數集)為( 。
A.(-∞,-2)∪(3,+∞)B.(2,3)C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.命題p:“?x∈R,x2+2<0”,則¬p為( 。
A.?x∈R,x2+2≥0B.?x∉R,x2+2<0C.?x∈R,x2+2≥0D.?x∈R,x2+2>0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點構成頂角為120°的等腰三角形,則橢圓的離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知集合M={x|x<-1或x>2},N={x|1<x<3},則M∩N等于    ( 。
A.{x|x<-1或x>1}B.{x|2<x<3}C.{x|-1<x<3}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.(1)已知x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$=2,求x+x-1的值;
(2)計算:($\frac{1}{16}$)${\;}^{-\frac{1}{4}}$-3${\;}^{lo{g}_{3}2}$(log34)•(log827)+2log12$\sqrt{3}$+log${\;}_{\frac{1}{12}}$$\frac{1}{4}$的值.

查看答案和解析>>

同步練習冊答案