分析 (1)先求導(dǎo),再分類討論即可得到函數(shù)的單調(diào)性;
(2)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,從而求導(dǎo)F′(x)=$\frac{x+a}{x}$,再由導(dǎo)數(shù)的正負(fù)討論確定函數(shù)的單調(diào)性,從而求函數(shù)的最大值,從而化恒成立問題為最值問題即可.
解答 解:(Ⅰ)f′(x)=$\frac{a}{x}$-a=$\frac{a-ax}{x}$=$\frac{a(1-x)}{x}$(x>0),
當(dāng)a>0時,f(x)的單調(diào)增區(qū)間為(0,1],單調(diào)減區(qū)間為[1,+∞);
當(dāng)a<0時,f(x)的單調(diào)增區(qū)間為[1,+∞),單調(diào)減區(qū)間為(0,1];
(Ⅱ)令F(x)=alnx-ax-3+(a+1)x+4-e=alnx+x+1-e,則F′(x)=$\frac{x+a}{x}$,
若-a≤e,即a≥-e,
F(x)在[e,e2]上是增函數(shù),
F(x)max=F(e2)=2a+e2-e+1≤0,
a≤$\frac{1}{2}$(e-1-e2),無解.
若e<-a≤e2,即-e2≤a<-e,
F(x)在[e,-a]上是減函數(shù);在[-a,e2]上是增函數(shù),
F(e)=a+1≤0,即a≤-1.
F(e2)=2a+e2-e+1≤0,即a≤$\frac{1}{2}$(e-1-e2),
∴-e2≤a≤$\frac{1}{2}$(e-1-e2).
若-a>e2,即a<-e2,
F(x)在[e,e2]上是減函數(shù),
F(x)max=F(e)=a+1≤0,即a≤-1,
∴a<-e2,
綜上所述,a≤$\frac{1}{2}$(e-1-e2).
點評 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性,以及考查了恒成立問題及分類討論的數(shù)學(xué)思想應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x2或y=-3x2 | B. | y=3x2 | C. | y2=-9x或y=3x2 | D. | y=-3x2或y2=9x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組別 | 第一 | 第二 | 第三 | 第四 |
分值區(qū)間 | [100,110) | [110,120) | [120,130) | [130,140] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(歲) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] |
頻數(shù) | m | n | 15 | 10 | 7 | 3 |
知道的人數(shù) | 4 | 6 | 12 | 6 | 3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -20 | B. | -15 | C. | 15 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2i | B. | 2i | C. | 2+I | D. | 2-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com