為了參加2013年市級高中籃球比賽,該市的某區(qū)決定從四所高中學(xué)校選出人組成男子籃球隊代表所在區(qū)參賽,隊員來源人數(shù)如下表:

學(xué)校
學(xué)校甲
學(xué)校乙
學(xué)校丙
學(xué)校丁
人數(shù)




該區(qū)籃球隊經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊員代表冠軍隊發(fā)言.
(Ⅰ)求這兩名隊員來自同一學(xué)校的概率;
(Ⅱ)設(shè)選出的兩名隊員中來自學(xué)校甲的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望

(I)
(II)的分布列為:









 .

解析試題分析:(I)由古典概型概率公式即得;(II)首先確定的所有可能取值.因為總共只取2人,甲校共有4人,故的所有可能取值為.將隊員分為甲校學(xué)生和非甲校學(xué)生,顯然這是一個超幾何分布,由超幾何分布概率公式即可得其分布列,從而得其期望.
試題解析:(I)“從這12名隊員中隨機選出兩名,兩人來自于同一學(xué)!庇涀魇录,
.                6分
(II)的所有可能取值為                  7分
,
的分布列為:









                             10分
                  13分
考點:古典概型、離散型隨機變量的分布列及數(shù)學(xué)期望..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

公安部交管局修改后的酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標(biāo)準(zhǔn)是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當(dāng)20≤X<80時,認(rèn)定為酒后駕車;當(dāng)X≥80時,認(rèn)定為醉酒駕車,重慶市公安局交通管理部門在對G42高速路我市路段的一次隨機攔查行動中,依法檢測了200輛機動車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計結(jié)果如下表:

X
[0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,+∞)
人數(shù)
t
1
1
1
1
1
依據(jù)上述材料回答下列問題:
(1)求t的值;
(2)從酒后違法駕車的司機中隨機抽取2人,求這2人中含有醉酒駕車司機的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人進(jìn)行乒乓球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)果相互獨立,第1局甲當(dāng)裁判.
(1)求第4局甲當(dāng)裁判的概率;
(2)用X表示前4局中乙當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市四所中學(xué)報名參加某高校今年自主招生的學(xué)生人數(shù)如下表所示:

中學(xué)
 
 
 
 
人數(shù)
 
 
 
 
為了了解參加考試的學(xué)生的學(xué)習(xí)狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學(xué)的學(xué)生當(dāng)中隨機抽取50名參加問卷調(diào)查.
(1)問四所中學(xué)各抽取多少名學(xué)生?
(2)從參加問卷調(diào)查的名學(xué)生中隨機抽取兩名學(xué)生,求這兩名學(xué)生自同一所中學(xué)的概率;
(3)在參加問卷調(diào)查的名學(xué)生中,從自兩所中學(xué)的學(xué)生當(dāng)中隨機抽取兩名學(xué)
生,用表示抽得中學(xué)的學(xué)生人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

佛山某中學(xué)高三(1)班排球隊和籃球隊各有名同學(xué),現(xiàn)測得排球隊人的身高(單位:)分別是:、、、、、、、、、,籃球隊人的身高(單位:)分別是:、、、、、、、.

(Ⅰ) 請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較小(無需計算);
(Ⅱ) 利用簡單隨機抽樣的方法,分別在兩支球隊身高超過的隊員中各抽取一人做代表,設(shè)抽取的兩人中身高超過的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)經(jīng)市批準(zhǔn)建設(shè)分校,工程從2010年底開工到2013年底完工,分三期完成,經(jīng)過初步招標(biāo)淘汰后,確定由甲、乙兩建筑公司承建,且每期工程由兩公司之一獨立完成,必須在建完前一期工程后再建后一期工程,已知甲公司獲得第一期,第二期,第三期工程承包權(quán)的概率分別是,,
(I)求甲乙兩公司均至少獲得l期工程的概率;
(II)求甲公司獲得的工程期數(shù)的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座。(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:

根據(jù)上表:
(Ⅰ)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩人拿兩顆骰子做投擲游戲,規(guī)則如下:若擲出的點數(shù)之和為3的倍數(shù),原擲骰子的人再繼續(xù)擲,否則,由對方接著擲。第一次由甲開始擲。
(1)分別求第二次、第三次由甲擲的概率;
(2)求前4次拋擲中甲恰好擲兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某品牌的汽車4S店,對最近100位采用分期付款的購車者進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4S店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元;分2期或3期付款,其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元.用表示經(jīng)銷一輛汽車的利潤.
(1)求上表中的值;
(2)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的概率;(3)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案