【題目】已知四棱錐P-ABCD,底面ABCD是邊長為2的蓌形,PA平面ABCD,PA=2,ABC=60°,E,F分別是BC,PC的中點。

1)求證:AEPD;

2)求二面角E-AF-C的余弦值。

【答案】1詳見解析2

【解析】

試題分析:)根據(jù)已知條件,容易得出AEBC,AEAD,而PA平面ABCD,所以便可得到AE平面PAD,所以得到AEPD;()根據(jù)()可知AE,AD,PA三條直線兩兩垂直,所以可分別以這三條直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,然后分別設(shè)平面AEF,和平面ACF的法向量為

可設(shè)菱形的邊長為2,根據(jù)條件可求出向量的坐標(biāo),根據(jù)法向量和這三個向量的垂直關(guān)系即可求出的坐標(biāo),所以求這兩個向量夾角的余弦值就可得到二面角E-AF-C的余弦值

試題解析:)BC=AB,ABC=60°,AEBC,∴△ABC是等邊三角形;

又E是BC中點,AEBC,BCAD,AEAD;

PAABCD,AE平面ABCDPAAE,即AEPA,ADPA=A;

AE平面PAD,AEPD

2以菱形對角線交點為原點建立坐標(biāo)系更好求點坐標(biāo)(個人觀點)

=(,0,0),=(,,1)

設(shè)平面AEF的一法向量為m=(x1,y1,z1),則,因此取z1=-1,則m=(0,2,-1)分 因為BDAC,BDPA,PA∩AC=A,所以BD平面AFC,故為平面AFC的一法向量.又=(-,3,0),所以cos<m,>=.因為二面角E-AF-C為銳角,所以所求二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小值;

(2)設(shè),討論函數(shù)的單調(diào)性;

(3)若斜率為的直線與曲線交于,兩點,其中,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,

1若曲線在點處的切線為,求的值;

2討論函數(shù)的單調(diào)性;

3設(shè)函數(shù),若至少存在一個,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點為原點, 極軸為軸的正半軸, 建立平面直角坐標(biāo)系, 直線的參數(shù)方程為為參數(shù)).

1判斷直線與曲線的位置關(guān)系, 并說明理由;

2若直線與曲線相交于兩點, ,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動。

(1)求從該班男、女同學(xué)中各抽取的人數(shù);

(2)從抽取的5名同學(xué)中任選2名談此活動的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且,

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)設(shè)是數(shù)列的前項和,若對任意的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,討論的單調(diào)性;

2若對任意的恒有成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且,設(shè),數(shù)列滿足.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和;

(3)若對一切正整數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案