已知函數(shù)f(x)=2sin(x+
π
3
)cosx.
(1)求f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:(1)f(x)解析式第一項利用兩角和與差的正弦函數(shù)公式化簡,再利用二倍角的正弦、余弦函數(shù)公式變形,整理后利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),根據(jù)正弦函數(shù)的值域即可確定出f(x)的值域;
(2)由f(A)=
3
2
以及第一問確定出的f(x)解析式,求出A的度數(shù),再由b與c的值,利用余弦定理求出a的值,根據(jù)正弦定理求出sinB的值,進(jìn)而確定出cosB的值,原式利用兩角和與差的余弦函數(shù)公式化簡后,將各自的值代入計算即可求出值.
解答: 解:(1)∵f(x)=(sinx+
3
cosx)cosx
=sinxcosx+
3
cos2x
=
1
2
sin2x+
3
2
cos2x+
3
2

=sin(2x+
π
3
)+
3
2

∵-1≤sin(2x+
π
3
)≤1,
∴函數(shù)f(x)的值域是[
3
-2
2
,
3
+2
2
];
(2)由f(A)=sin(2A+
π
3
)+
3
2
=
3
2
,得sin(2A+
π
3
)=0,
又A為銳角,∴A=
π
3
,
又b=2,c=3,
∴由余弦定理得:a2=b2+c2-2bccosA=4+9-2×2×3×
1
2
=7,即a=
7
,
由正弦定理
a
sinA
=
b
sinB
,得sinB=
bsinA
a
=
3
2
7
=
3
7
,
又b<a,∴B<A,
∴cosB=
1-sin2B
=
2
7
,
則cos(A-B)=cosAcosB+sinAsinB=
1
2
×
2
7
+
3
2
×
3
7
=
5
7
14
點(diǎn)評:此題考查了正弦、余弦定理,兩角和與差的正弦、余弦函數(shù)公式,以及正弦函數(shù)的值域,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2(m+1)x2-1與函數(shù)g(x)=4mx-2m有兩個交點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ω>0,|φ|<
π
2
,函數(shù)f(x)=sin(ωx+φ)的部分圖象如圖所示.為了得到函數(shù)g(x)=sinωx的圖象,只要將f(x)的圖象( 。
A、向右平移
π
4
個單位長度
B、向右平移
π
8
個單位長度
C、向左平移
π
4
個單位長度
D、向左平移
π
8
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有10個數(shù),它們能構(gòu)成一個以1為首項,-3為公比的等比數(shù)列,若從這10個數(shù)中隨機(jī)抽取一個數(shù),則它小于8的概率是(  )
A、
1
5
B、
1
10
C、
3
5
D、
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx+2
3
sinx,1),向量
n
=(cosx,-y),x,y∈R.
(1)若
m
n
,且y=1,求tan(x+
π
6
)的值;
(2)若
m
n
,設(shè)y=f(x),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ex
(x∈R),g(x)=
(2-x)ex
e2

(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)求證:當(dāng)x>1時,函數(shù)y=g(x)的圖象恒在函數(shù)y=f(x)的圖象下方;
(Ⅲ)若k>0,求不等式f′(x)-k(1-x)f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某港灣的平面示意圖如圖所示,O,A,B分別是海岸線l1,l2上的三個集鎮(zhèn),A位于O的正南方向6km處,B位于O的北偏東60°方向10km處.
(Ⅰ)求集鎮(zhèn)A,B間的距離;
(Ⅱ)隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)O的交通壓力,擬在海岸線l1,l2上分別修建碼頭M,N,開辟水上航線.勘測時發(fā)現(xiàn):以O(shè)為圓心,3km為半徑的扇形區(qū)域為淺水區(qū),不適宜船只航行.請確定碼頭M,N的位置,使得M,N之間的直線航線最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)為B2,右焦點(diǎn)為F2,△B2OF2為等腰直角三角形(O為坐標(biāo)原點(diǎn)),拋物線y2=4
2
x的焦點(diǎn)恰好是該橢圓的右頂點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)B1,B2分別是橢圓的下頂點(diǎn)和上頂點(diǎn),點(diǎn)P是橢圓上異與B1,B2的點(diǎn),求證:直線PB1和直線PB2的斜率之積為定值.
(3)已知圓M:x2+y2=
2
3
的切線l與橢圓相交于C,D兩點(diǎn),那么以CD為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,…,an},其中0≤a1<a2<…<an,且n≥3,若對?i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個屬于A,則稱數(shù)集A具有性質(zhì)P.
(Ⅰ)分別判斷數(shù)集{0,1,3}與數(shù)集{0,2,4,6}是否具有性質(zhì)P,說明理由;
(Ⅱ)已知數(shù)集A={a1,a2,…,a8}具有性質(zhì)P.
①求證:0∈A;
②判斷數(shù)列a1,a2,…,a8是否為等差數(shù)列,若是等差數(shù)列,請證明;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案