已知tan(3π+β)=-3,求(1)
3sinβ-2cosβ2sinβ+cosβ
;(2)4sin2β-3sinβcosβ
分析:(1)首先根據(jù)誘導公式把函數(shù)式進行整理,得到角的正切值,根據(jù)同角的三角函數(shù)關系,在分子和分母上同除以角的余弦,得到只含有正切的式子,代入數(shù)值求出結果.
(2)要把所給的式子轉化成只包含正切的形式,給式子加上一個分母1,把1變化成角的正弦與余弦的平方和,分子和分母同除以角的余弦的平方,得到結果.
解答:解:依題意tan(3π+β)=tan(π+β)=-3得到tanβ=-3(1分)
(1)原式=
3tanβ-2
2tanβ+1
=
11
5
(3分)
(2)原式=
4sin2β-3sinβcosβ
sin2β+cos2β
=
4tan2β-3tanβ
tan2β+1
=
9
2
(4分)
答:三角函數(shù)式的值是
11
5
9
2
點評:本題考查三角函數(shù)的化簡求值,本題解題的關鍵是把要求值的式子整理成只含有正切值的形式,這樣就要借助于同角之間的關系,本題是一個中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如圖:△ABC中,|
AC
|=2|
AB
|
,D在線段BC上,且
DC
=2
BD
,BM是中線,用向量證明AD⊥BM.(平面幾何證明不得分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(
π
4
+θ)=3
,則sin2θ-2cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(α+
π
4
)=3,則sin2α
=
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan
α
2
=3
,求cos(
π
2
+α)
=
3
5
3
5

查看答案和解析>>

同步練習冊答案