8.函數(shù)$y=\frac{cosx}{{2^x-2^{-x}}}$的圖象大致為( 。
A.B.C.D.

分析 先判斷函數(shù)的奇偶性,再判斷函數(shù)的變化趨勢,即可判斷正確選擇.

解答 解:∵f(-x)=$\frac{cos(-x)}{{2}^{-x}-{2}^{x}}$=$\frac{cosx}{{2}^{-x}+{2}^{x}}$=-f(x),
∴f(x)為奇函數(shù),
∴函數(shù)f(x)的圖象關(guān)于原點對稱,
當(dāng)x→+∞時,y→0,當(dāng)x→-∞,y→0,
當(dāng)x∈(0,$\frac{π}{2}$)時,cosx>0,2x-2-x>0,故y>0,
故選:D

點評 本題考查了函數(shù)圖象的識別,關(guān)鍵掌握函數(shù)的奇偶性和函數(shù)值的變化趨勢,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[-1,0]時,f(x)=-x,則f(2015)+f(2016)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-4x.
(1)求x∈[0,5]時,求f(x)的值域;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若直線y=kx+1(k∈R)與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖所示的程序框圖,若輸入n的值為7,則輸出s的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若曲線$\frac{x^2}{a-4}+\frac{y^2}{a+5}=1$的軌跡是雙曲線,則a的取值范圍是(-5,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.記定點M ($\frac{5}{2}$,3)與拋物線y2=2x上的點P之間的距離為d1,P到拋物線的準(zhǔn)線l距離為d2,則d1+d2的最小值為( 。
A.$\sqrt{13}$B.2$\sqrt{13}$C.13D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知等比數(shù)列{an}的公比q>0,前n項和為Sn.若2a3,a5,3a4成等差數(shù)列,a2a4a6=64,則q=2,Sn=$\frac{1}{2}$(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在正方形ABCD的邊長為2,$\overrightarrow{DE}=2\overrightarrow{EC}$,$\overrightarrow{DF}=\frac{1}{2}(\overrightarrow{DC}+\overrightarrow{DB})$,則$\overrightarrow{BE}•\overrightarrow{DF}$的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{10}{3}$D.$-\frac{10}{3}$

查看答案和解析>>

同步練習(xí)冊答案