已知圓臺的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺的母線長;(2)求該圓臺的體積。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面平面,且四邊形為矩形,四邊形為直角梯形,
,,,,.
(1)作出這個幾何體的三視圖(不要求寫作法).
(2)設(shè)是直線上的動點,判斷并證明直線與直線的位置關(guān)系.
(3) 求三棱錐的體積.[來.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AE、CF都與平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大;
(2)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形ABEF中,,,講DCEF沿CD折起,使得,得到一個幾何體,
(1)求證:平面ADF;
(2)求證:AF平面ABCD;
(3)求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠ABC=90°,∠A=30。,斜邊AC上的中線BD=2,現(xiàn)沿BD將△BCD折起成三棱錐C-ABD,已知G是線段BD的中點,E,F(xiàn)分別是CG,AG的中點.
(1)求證:EF//平面ABC;
(2)三棱錐C—ABD中,若棱AC=,求三棱錐A一BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點,點F在棱AB上,且AF=AB.
(1)求證:EF∥平面BC1D;
(2)在棱AC上是否存在一個點G,使得平面EFG將三棱柱分割成的兩部分體積之比為1∶15,若存在,指出點G的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com