3.在△ABC中,若BC=3,AC=4,AB=$\sqrt{13}$,則△ABC的面積等于( 。
A.3$\sqrt{3}$B.6$\sqrt{3}$C.8$\sqrt{3}$D.10$\sqrt{3}$

分析 利用余弦定理可得C,再利用三角形面積計算公式即可得出.

解答 解:由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{3}^{2}+{4}^{2}-(\sqrt{13})^{2}}{2×3×4}$=$\frac{1}{2}$,
C∈(0,π),∴C=$\frac{π}{3}$.
∴S△ABC=$\frac{1}{2}basinC$=$\frac{1}{2}×4×3×sin\frac{π}{3}$=3$\sqrt{3}$.
故選:A.

點評 本題考查了正弦定理與余弦定理的應(yīng)用、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.用數(shù)學(xué)歸納法證明:“兩兩相交且不共點的n條直線把平面分為f(n)部分,則f(n)=1+$\frac{n(n+1)}{2}$.”在證明第二步歸納遞推的過程中,用到f(k+1)=f(k)+( 。
A.k-1B.kC.k+1D.$\frac{k(k+1)}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=x+$\frac{16}{x+1}$ (x>-1)的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,內(nèi)角A,B,C對應(yīng)邊分別是a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀是( 。┤切危
A.直角B.銳角C.鈍角D.任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,側(cè)棱AA1⊥底面ABC,D是BC的中點,AA1=AB=AC=2,
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C∥平面AB1D;
(3)求三棱錐A1-B1DA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.利用一個球體毛坯切削后得到一個四棱錐P-ABCD,其中底面四邊形ABCD是邊長為1的正方形,PA=1,且PA⊥平面ABCD,則毛球體壞體積的體積最小應(yīng)為$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若大前提是:任何實數(shù)的平方都大于0,小前提是:a∈R,結(jié)論是:a2>0,那么這個演繹推理(  )
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.沒有錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定積分${∫}_{1}^{2}$$\frac{3x+1}{x}$dx=3+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有甲乙兩種產(chǎn)品,經(jīng)銷這兩種商品所能獲得的利潤分別是p萬元和q萬元,它們與投入資金x(萬元)的關(guān)系式為P=$\frac{1}{5}$x,Q=$\frac{3}{5}$$\sqrt{x}$.今有3萬元資金投入這兩種商品.
(1)求:經(jīng)銷兩種商品所獲得的總利潤y的函數(shù)關(guān)系式.
(2)為獲得最大利潤,對這兩種商品的資金分別投入多少時,能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案