若動圓與圓(x+2)2+y2=4外切且與直線x=2相切,則動圓圓心的軌跡方程是(  )
A、y2-12x+12=0
B、y2+12x-12=0
C、y2+8x=0
D、y2-8x=0
考點:軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:令動圓圓心P的坐標為(x,y),C1(-2,0),動圓得半徑為r,則根據(jù)兩圓相外切及直線與圓相切得性質(zhì)可得P(x,y)到C1(-2,0)與直線x=4的距離相等,化簡可求.
解答: 解:設圓(x+2)2+y2=4的圓心C1(-2,0),動圓圓心P的(x,y),半徑為r,作
x=4,x=2,PQ⊥直線x=4,Q為垂足,因圓P與x=2相切,故圓P到直線x=4的距離PQ=r+2,又PC1=r+2,
因此P(x,y)到C1(-2,0)與直線x=4的距離相等,P的軌跡為拋物線,焦點為C1(-2,0),準線x=4,
頂點為(1,0),
開口向右,可得P=6,方程為:y2=-12(x-1).
故選:B.
點評:本題主要考查了點的軌跡方程的求解,解題的關(guān)鍵是根據(jù)兩圓相外切及直線與圓相切得性質(zhì)得軌跡為拋物線.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系中,點P(3,1,5)關(guān)于xOz平面對稱的點的坐標為( 。
A、(3,-1,5)
B、(-3,-1,5)
C、(-3,1,5)
D、(-3,1,-5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={-1,0,1},B={(x,y)|y=cosx,x∈A},則A∩B=( 。
A、{1}
B、{1,cos1}
C、{0,cos1,cos(-1)}
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于曲線C:x4+y2=1,給出下列四個命題:
①曲線C關(guān)于原點對稱;     
②曲線C關(guān)于直線y=x對稱
③曲線C圍成的面積大于π
④曲線C圍成的面積小于π
上述命題中,真命題的序號為( 。
A、①②③B、①②④
C、①④D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意實數(shù)x,有f(-x)=-f(x),且當x>0時,有f′(x)>0,則當x<0時,有(  )
A、f'(x)≥0
B、f'(x)>0
C、f'(x)≤0
D、f'(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga
3-x
3+x
.(a>0且a≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)求不等式f(x)≥loga(2x)的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:3x-4y+2=0,A(2,-3)B(1,0)
(1)設過A于l平行的直線為m,過B于l垂直的直線為n,求兩直線方程
(2)若⊙C與l,m,n三直線都相切,且過坐標原點,求圓的方程
(3)若x,y滿足圓C方程,求下列代數(shù)式的取值范圍
y-2
x
,x2+y2+2x+2,3x+4y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知國家某5A級大型景區(qū)對每日游客數(shù)量擁擠等級規(guī)定如表:
游客數(shù)量(百人) 0~50 51~100 101~150 151~200 201~300>300
擁擠等級優(yōu)輕度擁擠中度擁擠重度擁擠嚴重擁擠
該景區(qū)對3月份的游客量作出如圖的統(tǒng)計數(shù)據(jù):

(I)某人3月份連續(xù)2天到該景區(qū)游玩,求這2天他遇到的游客擁擠等級均為良的概率;
(Ⅱ)從該景區(qū)3月份游客人數(shù)低于10 000人的天數(shù)中隨機選取3天,記這3天游客擁擠等級為優(yōu)的天數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1有相同的焦點,
(1)求此雙曲線的標準方程.
(2)求此雙曲線的焦點到漸近線距離.

查看答案和解析>>

同步練習冊答案