已知α∈(0,
π
2
),tanα=
1
2

求:(1)tan2α的值;    
(2)cos(2α+
π
3
)的值.
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:(1)由條件利用二倍角的正切公式求得tan2α的值.
(2)根據(jù)α∈(0,
π
2
),tan2α>0,求得sin2α和cos2α的值,再利用兩角和的余弦公式求得cos(2α+
π
3
)的值.
解答: 解:(1)因?yàn)閠anα=
1
2
,所以tan2α=
2tanα
1-tan2α
=
4
3

(2)因?yàn)棣痢剩?,
π
2
),所以2α∈(0,π).又tan2α>0,
所以sin2α=
4
5
,cos2α=
3
5

所以cos(2α+
π
3
)=cos2αcos
π
3
-sin2αsin
π
3
=
3-4
3
10
點(diǎn)評(píng):本題主要考查兩角和的正切公式、余弦公式,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二面角的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的量?jī)蓚(gè)半平面內(nèi),且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2
17
,求該二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=7,∠B=30°,∠C=120°,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=56,an+1=an-12(n∈N*).
(I)求a101;
(Ⅱ)(理科)求此數(shù)列的前n項(xiàng)和Sn的最大值;(文科)求此數(shù)列的前10項(xiàng)和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin2x+2
3
sinxcosx-1,x∈R.
(Ⅰ)求函數(shù)[40,50)的單調(diào)增區(qū)間;
(Ⅱ)函數(shù)的圖象可由函數(shù)y=sinx,x∈R的圖象經(jīng)過(guò)怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+lnx,函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=ex,且g(0)•g′(1)=e
(Ⅰ)求f(x)的極值;
(Ⅱ)若?x∈(0,+∞),使得g(x)<
x-m+3
x
成立,試求實(shí)數(shù)m的取值范圍:
(Ⅲ)當(dāng)a=0時(shí),對(duì)于?x∈(0,+∞),求證:g(x)-f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次射擊訓(xùn)練中,某戰(zhàn)士連續(xù)射擊了兩次,設(shè)命題p是“第一次射擊擊中目標(biāo)”,q是“第二次射擊擊中目標(biāo)”,試用p,q以及邏輯聯(lián)結(jié)詞“或”“且”“非”(∨,∧,?)表示下列命題:
(1)兩次都擊中目標(biāo),
(2)兩次都沒(méi)有擊中目標(biāo),
(3)兩次射擊中至少有一次擊中目標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a12+a22+…+an2=1,b12+b22+…+bn2=1,則a1b1+a2b2+…+anbn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2x+1+alnx有兩個(gè)極值點(diǎn)x1、x2,且x1<x2,則f(x1)的范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案