△ABC中,角A,B,C的對邊分別為a,b,c,若其面積S=
b2+c2-a2
16
,則sin
A
2
=
 
考點(diǎn):余弦定理
專題:三角函數(shù)的求值
分析:利用三角形面積公式表示出S,利用余弦定理列出關(guān)系式表示出b2+c2-a2,代入已知等式,整理后求出tanA的值,進(jìn)而求出cosA的值,再利用二倍角的余弦函數(shù)公式即可求出sin
A
2
的值.
解答: 解:將S=
1
2
bcsinA,a2=b2+c2-2bccosA,即b2+c2-a2=2bccosA,
代入S=
b2+c2-a2
16
,得:
1
2
bcsinA=
1
8
bccosA,
整理得:4sinA=cosA,即tanA=
1
4
>0,
∴cos2A=
1
1+tan2A
=
16
17
,即cosA=
4
17
17

則sin
A
2
=
1-cosA
2
=
17
-4
2
17

故答案為:
17
-4
2
17
點(diǎn)評:此題考查了余弦定理,三角形面積公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察如圖中各正方形圖案,每條邊上有n(n≥2)個(gè)圓點(diǎn),第n個(gè)圖案中圓點(diǎn)的總數(shù)是Sn,按此規(guī)律推斷出Sn與n的關(guān)系式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)為偶函數(shù),滿足f(x+2)=-f(x),且當(dāng)x∈(0,1)時(shí),f(x)=2x-2,則f(log0.524)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,對所有的n≥2,n∈N*都有a1•a2•a3…an=n2,則數(shù)列{an}的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用五種不同顏色給三棱臺(tái)ABC-DEF六個(gè)頂點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且每條棱的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1~20這二十個(gè)數(shù)中選四個(gè),這四個(gè)數(shù)各不相鄰的情況有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b)記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),則事件Cn概率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意α∈R,下列等式中恒成立的個(gè)數(shù)有
 
個(gè).
A.sin(2π-α)=sinα   
B.cos(-α)=cosα  
C.cos(π-α)=cos(2π+α)
D.cos(
π
2
-α)=-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-2)x+4a,x<1
ax,x≥1
是R上的減函數(shù),求實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案