12.從編號為0,1,2,…,79的80件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量為5的樣本,若編號為28的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號為( 。
A.75B.77C.76D.78

分析 根據(jù)系統(tǒng)抽樣的定義可得,樣本中產(chǎn)品的編號成等差數(shù)列,公差為16,再根據(jù)編號為28的產(chǎn)品在樣本中,可得樣本中產(chǎn)品的編號,從而得出結(jié)論.

解答 解:根據(jù)系統(tǒng)抽樣的定義可得,樣本中產(chǎn)品的編號成等差數(shù)列,公差為16,
再根據(jù)編號為28的產(chǎn)品在樣本中,可得樣本中產(chǎn)品的編號為:12,28,44,60,76,
故該樣本中產(chǎn)品的最大編號為 76,
故選:C.

點評 本題主要考查系統(tǒng)抽樣的定義和方法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,且$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={1,a,b},B={a,a2,ab},且A∩B=A∪B,求a1+b2+a3+b4+…+a2011+b2012+a2013+b2014的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.將下列弧度轉(zhuǎn)換為角度:
(1)$\frac{4π}{5}$
(2)$\frac{11π}{6}$
(3)-$\frac{7π}{4}$
(4)-$\frac{5π}{18}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若正項等比數(shù)列{an}滿足a2a4=1,S3=13,bn=log3an,則數(shù)列{bn}的前10項和為( 。
A.65B.-65C.25D.-25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$,則sin(α+$\frac{π}{4}$)=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC中,b=8,c=3,sinA=$\sqrt{\frac{247}{16}}$,求a的值,并判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知公差不為零的等差數(shù)列{an}各項為正數(shù),前n項和為Sn,2S2=a2〔a2+1〕,a1,a2,a4為等比數(shù)列.
(1)求通項公式an;
(2)設bn=2Sn+$\frac{3}{{a}_{n}}$,求bn的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在等差數(shù)列{an}中,若a2=-61,a5=-16,它的前6項最小,最小和是-231.

查看答案和解析>>

同步練習冊答案