函數(shù)y=f(x),自變量x由x0改變到x0+△x時,函數(shù)的改變量△y等于( 。
A、y=f(x0+△x)
B、y=f(x0)+△x
C、y=f(x0)•△x
D、y=f(x0+△x)-f(x0
考點:變化的快慢與變化率
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)題意函數(shù)y=f(x),我們知道當(dāng)自變量x變化時,因變量也要發(fā)生變化,因此把x0和x0+△x分別代入函數(shù)y=f(x),然后相減求出△y.
解答: 解:∵自變量x由x0改變到x0+△x,
當(dāng)x=x0,y=f(x0),
當(dāng)x=x0+△x,y=f(x0+△x),
∴△y=f(x0+△x)-f(x0),
故選D.
點評:此題是一道基礎(chǔ)題,考查了函數(shù)自變量與因變量之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3},函數(shù)f(x)的定義域、值域都是A,且對于任意i∈A,f(i)≠i,設(shè)a1,a2,a3是1,2,3的任意一個排列,定義數(shù)表
a       a2        a3
f(a1)   f(a2)   f(a3)
,若兩個數(shù)表對應(yīng)位置上至少有一個數(shù)不同,就稱這是兩個不同的數(shù)表,那么滿足條件的不同的數(shù)表共有( 。
A、12個B、15個
C、18個D、20個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=|
b
|=
2
,
a
b
=0,(
a
-
c
)•(
b
-
c
)=0,則|
c
|的最大值是( 。
A、2B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x+2y-1)(x-y+3)>0所表示的平面區(qū)域為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項敘述錯誤的是( 。
A、若p∨q為真命題,則p,q均為真命題
B、若命題p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0
C、命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0則x=1”
D、“x>2”是“x2-3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和一個偶數(shù),組成沒有重復(fù)數(shù)字的三位數(shù),其個數(shù)為( 。
A、432B、288
C、216D、108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+i)•z=-i,那么復(fù)數(shù)|z|-z對應(yīng)的點位于復(fù)平面內(nèi)的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{0,1,2,3},若|a-b|≤1,就稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( 。
A、
3
8
B、
1
2
C、
5
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a+2,(a+1)2,|a|},若1∈A,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案