給出如下命題:
①命題“在△ABC中,若A=B,則sinA=sinB”的逆命題為真命題;
②若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為線段F1F2;
③若p∧q為假命題,則p,q都是假命題;
④設(shè)x∈R,則“x2-3x>0”是“x>4”的必要不充分條件;
⑤若實(shí)數(shù)1,m,9成等比數(shù)列,則圓錐曲線
x2
m
+y2=1的離心率為
6
3

其中所有正確命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:寫出原命題的逆命題判斷①;由橢圓定義判斷②;根據(jù)復(fù)合命題的真值表判斷③;求解不等式判斷④;由等比數(shù)列的性質(zhì)求得m值,由m=-3是命題不成立判斷⑤.
解答: 解:①命題“在△ABC中,若A=B,則sinA=sinB”的逆命題為“在△ABC中,若sinA=sinB,則A=B”,是真命題;
②若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為線段F1F2,正確,原因是只有線段F1F2上的點(diǎn)到定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8;
③若p∧q為假命題,則p,q都是假命題,錯(cuò)誤,原因是只要p、q中有一個(gè)是假命題,就有p∧q為假命題;
④設(shè)x∈R,由x>4能得到x2-3x>0,反之由x2-3x>0不一定有x>4.則“x2-3x>0”是“x>4”的必要不充分條件;
⑤若實(shí)數(shù)1,m,9成等比數(shù)列,則m2=9,m=±3.
若m=-3,圓錐曲線
x2
m
+y2=1表示焦點(diǎn)在y軸上的雙曲線,此時(shí)a=1,c2=1+3=4,c=2,圓錐曲線
x2
m
+y2=1的離心率為2,命題⑤錯(cuò)誤.
故答案為:①②④.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了圓錐曲線的簡(jiǎn)單幾何性質(zhì),考查了復(fù)合命題的真假判斷,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=f(x)=x-2m2-m+3,其中m∈[-2,2],m∈Z,滿足
(1)定區(qū)間(0,+∞)的增函數(shù);
(2)對(duì)任意的x∈R,都有f(-x)+f(x)=0;
求同時(shí)滿足(1)(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時(shí)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知幾何體的三視圖,則該幾何體的表面積為
 
,體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-2-x,x≤0
|lgx|,x>0
,則方程f(2x2+x)=a(a>0)的根的個(gè)數(shù)不可能為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把正方形ABCD沿對(duì)角線BD折成直二面角后,有如下四個(gè)結(jié)論:
①AC⊥BD;                           ②△ACD是等邊三角形;
③AB與平面BCD成60°角;      ④AB與CD所成角為60°
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地一填的溫度(單位:℃)隨時(shí)間t(單位:小時(shí))的變化近似滿足函數(shù)關(guān)系:f(t)=24-4sinωx-4
3
ωx,t∈[0,24),且早上8時(shí)的溫度為24℃,ω∈(0,
π
8

(Ⅰ)求函數(shù)的解析式,并判斷這一天的最高溫度是多少?出現(xiàn)在何時(shí)?
(Ⅱ)當(dāng)?shù)赜幸煌ㄏ鼱I(yíng)業(yè)的超市,為了節(jié)省開(kāi)支,規(guī)定在環(huán)境溫度超過(guò)28℃時(shí),開(kāi)啟中央空調(diào)降溫,否則關(guān)閉中央空調(diào),問(wèn)中央空調(diào)應(yīng)在可使開(kāi)啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
1
x

(1)用函數(shù)單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)方程2t•f(4t)-mf(2t)=0,當(dāng)t∈[1,2]時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)(x,y)在不等式組
x+y≥0
x+2y-2≥0
x+3y-3≥0
表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則z=2x+3y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:
7x-4
-
7x-5
=
4x-1
-
4x-2

查看答案和解析>>

同步練習(xí)冊(cè)答案