春節(jié)期間,“厲行節(jié)約,反對浪費”之風(fēng)悄然吹開,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯(lián)表:表(一)
做不到“光盤”能做到“光盤”
4510
3015
表(二)
P(k2≥k)0.100.050.025
k2.7063.8415.024
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

(1)估計該市居民中,能做到“光盤”行動的居民比例;
(2)判斷是否有90%以上的把握認(rèn)為“該市居民能否做到”光盤”與性別有關(guān)?
考點:獨立性檢驗的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:(1)100名性別不同的居民能做到“光盤”行動的有25名,故可得結(jié)論;
(2)代入公式計算k的值,和臨界值表比對后即可得到答案.
解答: 解:(1)100名性別不同的居民能做到“光盤”行動的有25名,故估計該市居民中,能做到“光盤”行動的居民比例為
25
100
=25%;
(2)k2=
100×(45×15-30×10)2
75×25×55×45
≈3.030>2.706,
所以有90%的把握認(rèn)為“該市居民能否做到”光盤”與性別有關(guān).
點評:本題是一個獨立性檢驗,我們可以利用臨界值的大小來決定是否拒絕原來的統(tǒng)計假設(shè),若值較大就拒絕假設(shè),即拒絕兩個事件無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax(a>0,a≠1),且f(-2)=
1
4

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)=log2[m-f2(x)+4f(x)]若此函數(shù)在[0,2]上存在零點,求實數(shù)m的取值范圍;
(Ⅲ)若
1
3
≤k<1,函數(shù)f1(x)=|f(x)-1|-k的零點分別為x1,x2(x1<x2),函數(shù)f2(x)=|f(x)-1|-
k
2k+1
的零點分別為x3,x4(x3<x4),求x1-x2+x3-x4的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-1)2+(y-1)2=2與圓C2關(guān)于直線l:y=x+m對稱.
(1)若直線l截圓C1所得弦長為2,求實數(shù)m的值;
(2)若m=4,P為直線l上一動點,過P作圓C2的兩條切線,切點分別為A,B,求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1.
(1)求異面直線BA1與CC1所成角的大;
(2)求證:A1C⊥平面BC1D;
(3)求三棱錐C-BDC1的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)函數(shù)圖象解不等式sinx>cosx,x∈[0,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△BCD中,∠BCD=90°,BC=CD=a,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
AE
AC
=
AF
AD
=λ(0<λ<1)

(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)求二面角A-CD-B的正切值;
(Ⅲ)當(dāng)λ為何值時,平面BEF⊥平面ACD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,BA⊥平面PAD,AP=AD,DC∥AB,DC=2AB,E是棱
PD的中點.
(1)求證:AE∥平面PBC;
(2)求證:平面PBC⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=(-∞,a],B=(b,+∞),a∈N,b∈R,且A∩B∩N={2},則a+b的取值區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

海中有一個雷達(dá)觀測站A,某時刻測得一艘勻速直線行駛的船只位于點A北偏東45°方向上且與點A相距40
2
海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東45°+θ方向上(其中sinθ=
30
6
,0°<θ<90°)且與點A相距10
3
海里的位置C.則該船的行駛速度為
 
海里/小時.

查看答案和解析>>

同步練習(xí)冊答案