已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
(I)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;時(shí),的極小值為1.
(II)

試題分析:(I)應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值的基本題型,利用“表解法”清晰明了.
(II)解答本題的關(guān)鍵是,首先將問(wèn)題轉(zhuǎn)化成“若在區(qū)間(0,e]上至少存在一點(diǎn),,使得成立,其充要條件是在區(qū)間(0,e]上的最小值小于0”.
應(yīng)用分類討論思想,就為正數(shù)、負(fù)數(shù)的不同情況加以討論.
試題解析:(I)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023550261958.png" style="vertical-align:middle;" />
當(dāng)a=1,
,得
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023550339784.png" style="vertical-align:middle;" />,的變化情況如下表:

(0,1)
1


-
0
+


極小值

所以時(shí),的極小值為1.
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023550511996.png" style="vertical-align:middle;" />,且
,得到,
若在區(qū)間(0,e]上至少存在一點(diǎn),,使得成立,
其充要條件是在區(qū)間(0,e]上的最小值小于0即可.
當(dāng)<0,
時(shí),對(duì)成立,
所以,在區(qū)間(0,e]上單調(diào)遞減,
在區(qū)間(0,e]上的最小值為,
,得,即
當(dāng)>0,即時(shí),
,則對(duì)成立,
所以在區(qū)間上單調(diào)遞減,
所以,在區(qū)間上的最小值為>0,
顯然,在區(qū)間上的最小值小于0不成立;
②若,即時(shí),則有

(0,)

(,e)

-
0
+


極小值

所以在區(qū)間上的最小值為,
=a(1?lna)<0,
,解得,即
綜上,由(1)(2)可知:符合題意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為28,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵求函數(shù)的值域;
⑶已知對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,其中,如果存在實(shí)數(shù),使,則的值為(   )
A.必為正數(shù)B.必為負(fù)數(shù)C.必為非負(fù)D.必為非正

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的函數(shù)滿足f(1)=1,且對(duì)任意x∈R都有,則不等式的解集為   (  )
A.(1,2)B.(0,1)C.(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),當(dāng)時(shí),不等式
恒成立,則實(shí)數(shù)的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)是f(x)的導(dǎo)函數(shù),若,,則=           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則函數(shù)的圖象在點(diǎn)處的切線方程是          .

查看答案和解析>>

同步練習(xí)冊(cè)答案