【題目】,則的最小值為______.

【答案】

【解析】

(其中,則),其幾何意義為兩點,的距離的平方,令,

,而是拋物線上的點到準線的距離,從而可以看作拋物線上的點到焦點距離和到上的點的距離的和,即的最小值是點上的點的距離的最小值.

(其中,則),其幾何意義為兩點的距離的平方,令,

的導數(shù)為,,

在曲線上,又,

,

,而是拋物線上的點到準線的距離,即拋物線上的點到焦點的距離,

從而可以看作拋物線上的點到焦點距離和到上的點的距離的和,即,如圖所示:

由兩點之間線段最短,得的最小值是點上的點的距離的最小值,由點到直線上垂線段最短,則就最小,即最小,

,則,即,解得,即

的距離就是點上的點的距離的最小值,

的最小值為,即的最小值為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,射線l(x≥0),曲線C1的參數(shù)方程為為參數(shù)),曲線C2的方程為;以原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C3的極坐標方程為

1)寫出射線l的極坐標方程以及曲線C1的普通方程;

2)已知射線lC2交于O,M,與C3交于O,N,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

(1)在線段BC是否存在一點E,使得ND⊥FC ,若存在,求出EC的長并證明;

若不存在,請說明理由.

(2)求四面體NEFD體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為棱中點,底面是邊長為2的正方形,為正三角形,平面與棱交于點,平面與平面交于直線,且平面平面.

1)求證:;

2)求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,且離心率為,圓

(1)求橢圓C的方程,

(2)P在圓D上,F為橢圓右焦點,線段PF與橢圓C相交于Q,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知k∈R,P(a,b)是直線x+y=2k與圓x2+y2=k2-2k+3的公共點,則ab的最大值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)你能否估計哪個班級學生平均每周咀嚼檳榔的顆數(shù)較多?

(2)從班的樣本數(shù)據中隨機抽取一個不超過19的數(shù)據記為,從班的樣本數(shù)據中隨機抽取一個不超過21的數(shù)據記為,求的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)從班的樣本數(shù)據中隨機抽取一個不超過19的數(shù)據記為,從班的樣本數(shù)據中隨機抽取一個不超過21的數(shù)據記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.

(1)求證:;

(2)若為線段的中點,求證:平面

(3)求多面體的體積.

查看答案和解析>>

同步練習冊答案