已知點A(1,3),B(4,-1),則下面與向量
AB
垂直的單位向量是( 。
A、(
4
5
,
3
5
B、(
3
5
,-
4
5
C、(
3
5
,
4
5
D、(-
4
5
3
5
考點:平面向量數(shù)量積的運算
專題:計算題
分析:求出
AB
=(3,-4),設與向量
AB
垂直的單位向量
e
=(x,y),根據(jù)向量的數(shù)量積得出關于x,y的方程組,得出單位向量.
解答: 解:∵點A(1,3),B(4,-1),∴
AB
=(3,-4),
設與向量
AB
垂直的單位向量
e
=(x,y),則
3x-4y=0
x2+y2=1

解得
x=
4
5
y=
3
5
x=-
4
5
y=-
3
5
,所以
e
=(
4
5
3
5
)或(-
4
5
,-
3
5

故選:A.
點評:本題考查向量的基本運算:減法,數(shù)量積.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log 
1
2
(x+2)+1的反函數(shù)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-2x-3<0},B={x||x|<2},則A∩B等于( 。
A、{x|-1<x<2}
B、{x|2<x<3}
C、{x|x<-1}
D、{x|x>3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
x≥0
x-y+2≥0
2x+y-5≤0
,則目標函數(shù)z=x+y的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y1=ln(1-x)定義域為A,函數(shù)y2=ex-1的值域為B,則A∩B是(  )
A、∅B、R
C、(0,1)D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)與
x2
m2
-
y2
n2
=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率( 。
A、
3
3
B、
2
2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,試求:
(1)xyz的值;
(2)x4+y4+z4的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=a,a2=p(p為常數(shù)且p>0),Sn為數(shù)列{an}的前n項和,且Sn=
n(an-a1)
2

(Ⅰ)求a的值;
(Ⅱ)試判斷數(shù)列{an}是不是等差數(shù)列?若是,求其通項公式;若不是,請說是理由.
(Ⅲ)若記Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
(n∈N*),求證:P1+P2+…+Pn<2n+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,設F是拋物線E:x2=2py(p>0)的焦點,過點F作斜率分別為k1、k2的兩條直線l1、l2,且k1•k2=-1,l1與E相交于點A、B,l2與E相交于點C,D.已知△AFO外接圓的圓心到拋物線的準線的距離為3(O為坐標原點).
(1)求拋物線E的方程;
(2)若
AF
FB
+
DF
FC
=64,求直線l1、l2的方程.

查看答案和解析>>

同步練習冊答案