【題目】平面內(nèi)任意一點(diǎn)到兩定點(diǎn)、的距離之和為.
(1)若點(diǎn)是第二象限內(nèi)的一點(diǎn)且滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)平面內(nèi)有關(guān)于原點(diǎn)對(duì)稱的兩定點(diǎn),判別是否有最大值和最小值,請(qǐng)說(shuō)明理由?
【答案】(1);(2)有最大值,最小值.
【解析】
由橢圓的定義可以直接求出橢圓的標(biāo)準(zhǔn)方程.
(1)根據(jù)數(shù)量積的坐標(biāo)運(yùn)算公式,得到等式,與橢圓的標(biāo)準(zhǔn)方程聯(lián)立,解方程即可;
(2)設(shè)出兩點(diǎn)坐標(biāo),根據(jù)平面向量數(shù)量積的坐標(biāo)表示公式,結(jié)合點(diǎn)在橢圓上和橢圓的范圍,可以求出的最大值及最小值.
因?yàn)?/span>,所以橢圓的定義可知:點(diǎn)的軌跡是以、為焦點(diǎn)的橢圓,,所以點(diǎn)的軌跡方程為:.
(1)設(shè)點(diǎn)的坐標(biāo)為:,所以
,
因?yàn)?/span>,所以,與聯(lián)立,解得
,點(diǎn)的坐標(biāo)為;
(2)存在最大值和最小值,理由如下:
根據(jù)題意,設(shè)的坐標(biāo)分別為:,
,
則而,
所以,因?yàn)?/span>,所以,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形中,,,為邊的中點(diǎn),沿將折起使得平面平面.
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)求折后直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,為實(shí)數(shù)).
(1)若為偶函數(shù),求實(shí)數(shù)的值;
(2)設(shè),求函數(shù)的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲同學(xué)參加化學(xué)競(jìng)賽初賽,考試分為筆試、口試、實(shí)驗(yàn)三個(gè)項(xiàng)目,各單項(xiàng)通過(guò)考試的概率依次為、、,筆試、口試、實(shí)驗(yàn)通過(guò)考試分別記4分、2分、4分,沒(méi)通過(guò)的項(xiàng)目記0分,各項(xiàng)成績(jī)互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進(jìn)入復(fù)賽,求甲同學(xué)進(jìn)入復(fù)賽的概率;
(Ⅱ)記三個(gè)項(xiàng)目中通過(guò)考試的個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面是直角梯形,平面,,為中點(diǎn),且.
(1)求證:平面;
(2)若與底面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)對(duì),不等式都成立,求整數(shù)k的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)都在球的表面上,平面,,,,,則:(1)球的表面積為__________;(2)若是的中點(diǎn),過(guò)點(diǎn)作球的截面,則截面面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)討論在其定義域上的單調(diào)性;
(2)設(shè),m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com