【題目】設,,其中a,.
Ⅰ求的極大值;
Ⅱ設,,若對任意的,恒成立,求a的最大值;
Ⅲ設,若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
【答案】(Ⅰ)1;(Ⅱ);(Ⅲ).
【解析】
Ⅰ求出的導數(shù),令導數(shù)大于0,得增區(qū)間,令導數(shù)小于0,得減區(qū)間,進而求得的極大值;
Ⅱ當,時,求出的導數(shù),以及的導數(shù),判斷單調(diào)性,去掉絕對值可得,構造函數(shù),求得的導數(shù),通過分離參數(shù),求出右邊的最小值,即可得到a的范圍;
Ⅲ求出的導數(shù),通過單調(diào)區(qū)間可得函數(shù)在上的值域為,由題意分析時,結合的導數(shù)得到在區(qū)間上不單調(diào),所以,,再由導數(shù)求得的最小值,即可得到所求范圍.
Ⅰ,
當時,,在遞增;當時,,在遞減.
則有的極大值為;
Ⅱ當,時,,,
在恒成立,在遞增;
由,在恒成立,在遞增.
設,原不等式等價為,
即,,在遞減,
又,在恒成立,
故在遞增,,
令,,
∴
,在遞增,
即有,即;
Ⅲ,
當時,,函數(shù)單調(diào)遞增;
當時,,函數(shù)單調(diào)遞減.
又因為,,,
所以,函數(shù)在上的值域為.
由題意,當取的每一個值時,
在區(qū)間上存在,與該值對應.
時,,,
當時,,單調(diào)遞減,不合題意,
當時,時,,
由題意,在區(qū)間上不單調(diào),所以,,
當時,,當時, 0'/>
所以,當時,,
由題意,只需滿足以下三個條件:,
,使.
,所以成立由,所以滿足,
所以當b滿足即時,符合題意,
故b的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓相交于兩點.
(1)若橢圓的離心率為,焦距為2,求線段的長;
(2)若向量與向量互相垂直(其中為坐標原點),當橢圓的離心率時,求橢圓的長軸長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點M為棱A1B1的中點.
求證:(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4個現(xiàn)從中隨機取球,每次只取一球.
若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;
若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達到五次就終止游戲,記游戲結束時一共取球X次,求隨機變量X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3.
(1)求橢圓的方程;
(2)動直線與橢圓交于A,B兩點,在平面上是否存在定點P,使得當直線PA與直線PB的斜率均存在時,斜率之和是與無關的常數(shù)?若存在,求出所有滿足條件的定點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運輸公司年有萬輛公交車,計劃年投入輛新型號公交車,以后每年投入的新型號公交車數(shù)量均比上年增加.
(1)年應投入多少輛新型號公交車?
(2)從年到年間共投入多少輛新型號公交車?
(3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的離心率為,橢圓與軸交于兩點,且.
(1)求橢圓的方程;
(2)設點是橢圓上的一個動點,且點在軸的右側,直線與直線交于兩點,若以為直徑的圓與軸交于,求點橫坐標的取值范圍及的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com