17.將函數(shù)f(2x)的圖象向左平移1個(gè)單位長度,所得圖象與g(x)=lnx的圖象關(guān)于直線y=x對(duì)稱,則f(x)等于( 。
A.ex-1B.${e^{1-\frac{x}{2}}}$C.${e^{\frac{x}{2}-1}}$D.e1-x

分析 由函數(shù)圖象變換規(guī)則,只需把過程倒過來即可.

解答 解:∵g(x)=lnx關(guān)于直線y=x對(duì)稱的函數(shù)為y=ex,
向右平移1個(gè)單位可得y=ex-1,
由題意可得f(2x)=ex-1
∴f(x)=${e}^{\frac{x}{2}-1}$
故選:C

點(diǎn)評(píng) 本題考查函數(shù)圖象變換,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=3x3-ax2+x-5在區(qū)間[1,2]上單調(diào)遞增,則a的取值范圍是a≤5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線y=x+lnx在點(diǎn)(e2,e2+2)處的切線在y軸上的截距為( 。
A.1B.-1C.e2D.-e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列關(guān)系中正確的個(gè)數(shù)為( 。
①$\frac{1}{2}$∈R    ②$\sqrt{2}$∉Q    ③|-3|∉N+        ④|-$\sqrt{3}$|∈Q.
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax(a∈R),g(x)=$\frac{x}$+2lnx(b∈R),G(x)=f(x)-g(x),且G(1)=0,G(x)在x=1處的切線斜率為0
(I)求a,b;
(Ⅱ)設(shè)an=G′($\frac{1}{n}$)+n-2,求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{11}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

等比數(shù)列的首項(xiàng),前項(xiàng)和為,且,則數(shù)列的前5項(xiàng)和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{lg(5-x)}{\sqrt{x-3}}$的定義域?yàn)椋?,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x-1)=x2+6x,則f(x)的表達(dá)式是( 。
A.x2+4x-5B.x2+8x+7C.x2+2x-3D.x2+6x-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)在R上是偶函數(shù),且滿足f(4-x)=f(x),若x∈(0,2)時(shí),f(x)=2x2,則f(7)=2.

查看答案和解析>>

同步練習(xí)冊答案