【題目】已知橢圓的離心率為,,,,的面積為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)作與軸不重合的直線交橢圓于,兩點(diǎn),連接,分別交直線于,,兩點(diǎn),若直線,的斜率分別為,,試問(wèn):是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)為定值,理由見(jiàn)解析
【解析】
(1)結(jié)合橢圓離心率、的面積、列方程組,解方程組求得,由此求得橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)直線斜率不存在時(shí),求得兩點(diǎn)的坐標(biāo),由此求得直線的方程,進(jìn)而求得兩點(diǎn)的坐標(biāo),由此求得,,求得.當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立直線的方程和橢圓方程,寫(xiě)出韋達(dá)定理,求得直線的方程,進(jìn)而求得兩點(diǎn)的坐標(biāo),由此求得,,結(jié)合韋達(dá)定理計(jì)算.由此證得為定值.
(1)由題意得,
解得,
所以橢圓的方程為.
(2)由(1)知,,
①當(dāng)直線斜率不存在時(shí),直線方程為,
聯(lián)立,得,
不防設(shè),,
則直線方程為,
令,得,則,
此時(shí),,
同理,
所以,
②當(dāng)直線斜率存在時(shí),設(shè)直線方程為,
聯(lián)立,得,
設(shè),,
則,,
直線方程為,
令,得,則,
同理,
所以,,
所以
綜上所述,為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓,四點(diǎn)中恰有三點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過(guò)左焦點(diǎn)的直線交橢圓于A,B兩點(diǎn),若直線、、的斜率依次成等差數(shù)列,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,E為AD中點(diǎn),F為CC1中點(diǎn).
(1)求證:AD⊥D1F;
(2)求證:CE//平面AD1F;
(3)求AA1與平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)為,,是上的動(dòng)點(diǎn),則下列結(jié)論正確的是( )
A.B.離心率
C.面積的最大值為D.以線段為直徑的圓與直線相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)廠商在銷售某型號(hào)手機(jī)時(shí)開(kāi)展“手機(jī)碎屏險(xiǎn)”活動(dòng).用戶購(gòu)買(mǎi)該型號(hào)手機(jī)時(shí)可選購(gòu)“手機(jī)碎屏險(xiǎn)”,保費(fèi)為元,若在購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購(gòu)買(mǎi)該“手機(jī)碎屏險(xiǎn)”的用戶比例):
(1)根據(jù)上面的數(shù)據(jù)計(jì)算得,求出關(guān)于的線性回歸方程;
(2)若愿意購(gòu)買(mǎi)該“手機(jī)碎屏險(xiǎn)”的用戶比例超過(guò),則手機(jī)廠商可以獲利,現(xiàn)從表格中的種保費(fèi)任取種,求這種保費(fèi)至少有一種能使廠商獲利的概率.
附:回歸方程中斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,點(diǎn)為中點(diǎn),底面為梯形,,,.
(1)證明:平面;
(2)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男生女生人數(shù)如表: 已知在全校學(xué)生中隨機(jī)抽取1名,抽到的是初二年級(jí)女生的概率是0.19.
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
(1)求x的值.
(2)現(xiàn)用分層抽樣法在全校抽取48名學(xué)生,問(wèn)應(yīng)在初三年級(jí)學(xué)生中抽取多少名?
(3)已知y≥245,z≥245,求初三年級(jí)女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測(cè)該地區(qū)2016年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的左、右焦點(diǎn)分別是,,點(diǎn)為的上頂點(diǎn),點(diǎn)在上,,且.
(1)求的方程;
(2)已知過(guò)原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線過(guò)且與橢圓交于,兩點(diǎn),若,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com