【題目】某初級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男生女生人數(shù)如表: 已知在全校學(xué)生中隨機(jī)抽取1名,抽到的是初二年級(jí)女生的概率是0.19.

初一年級(jí)

初二年級(jí)

初三年級(jí)

女生

373

x

y

男生

377

370

z

(1)求x的值.

(2)現(xiàn)用分層抽樣法在全校抽取48名學(xué)生,問應(yīng)在初三年級(jí)學(xué)生中抽取多少名?

(3)已知y245,z245,求初三年級(jí)女生比男生多的概率.

【答案】1;(2名;(3

【解析】

1)利用 “全校學(xué)生中隨機(jī)抽取1名,抽到的是初二年級(jí)女生的概率”列方程,解方程求得的值.

2)利用分層抽樣的抽樣比,計(jì)算出在初三年級(jí)學(xué)生中抽取的人數(shù).

(3)利用列舉法和古典概型概率計(jì)算公式,計(jì)算出初三年級(jí)女生比男生多的概率.

1)依題意,所以.

2)由初一、初二學(xué)生人數(shù)為,所以初三學(xué)生人數(shù)為人,故用分層抽樣法在全校抽取名學(xué)生,問應(yīng)在初三年級(jí)學(xué)生中抽取名.

3)由(2)可知,而,所以初三女生和男生人數(shù)的可能取值有:種,其中女生比男生多的為種,故初三年級(jí)女生比男生多的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換,后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

求曲線的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;

上求一點(diǎn)M,使點(diǎn)M到直線l的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)a=0時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;

(2)令求函數(shù)的極值.

(3)若,正實(shí)數(shù)滿足,

證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,,,,的面積為

1)求橢圓的方程;

2)過右焦點(diǎn)作與軸不重合的直線交橢圓,兩點(diǎn),連接分別交直線于,兩點(diǎn),若直線的斜率分別為,,試問:是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形,底面,是棱的中點(diǎn),且,

1)求證:平面

2)求二面角的大小;

3)如果是棱的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是棱長(zhǎng)為2的正方體,為面對(duì)角線上的動(dòng)點(diǎn)(不包括端點(diǎn)),平面于點(diǎn),.

1)試用反證法證明直線是異面直線;

2)設(shè),將長(zhǎng)表示為的函數(shù),并求此函數(shù)的值域;

3)當(dāng)最小時(shí),求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三位同學(xué)畢業(yè)后,發(fā)現(xiàn)市內(nèi)一些小家電配件的批發(fā)商每天的批發(fā)零售的生意很火爆,于是他們?nèi)藳Q定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),專門生產(chǎn)這類小家電配件,并與經(jīng)銷商簽訂了經(jīng)銷合同,他們生產(chǎn)出的小家電配件,以每件元的價(jià)格全部由經(jīng)銷商包銷.經(jīng)市場(chǎng)調(diào)研,生產(chǎn)這類配件,每月需要投入固定成本為萬元,每生產(chǎn)萬件配件,還需再投入資金萬元.在月產(chǎn)量不足萬件時(shí),(萬元);在月產(chǎn)量不小于萬件時(shí),(萬元).已知月產(chǎn)量是萬件時(shí),需要再投入的資金是萬元.

1)試將生產(chǎn)這些小家電的月利潤(rùn)(萬元)表示成月產(chǎn)量(萬件)的函數(shù);(注:月利潤(rùn)月銷售收入固定成本再投入成本)

2)月產(chǎn)量為多少萬件時(shí),這三位同學(xué)生產(chǎn)這些配件獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平行四邊形中,,,于點(diǎn),將沿折起,使,連接、,得到如圖②所示的幾何體.

(1)求證:平面平面

(2)若點(diǎn)在線段上,直線與平面所成角的正切值為,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案