A. | 6 | B. | 4 | C. | -4 | D. | -6 |
分析 由g(x)=f(x-1),g(x)是奇函數(shù),可以推導(dǎo)函數(shù)f(x)是周期為4的周期函數(shù),由g(x)的圖象過(guò)點(diǎn)(-1,3),得g(-1)=3,利用g(x)是奇函數(shù),則g(1)=-3,結(jié)合函數(shù)的奇偶性和周期性,可以進(jìn)行求值.
解答 解:∵g(x)=f(x-1),g(x)是奇函數(shù),
∴g(-x)=-g(x),
即f(-x-1)=-f(x-1),
又f(x)是偶函數(shù),
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函數(shù)f(x)的周期性為4,
∴f(2012)=f(0),
∵g(x)=f(x-1),
∴g(2013)=f(2013-1)=f(2012)=f(0),
∴f(2012)+g(2013)=2f(0),
∵g(x)的圖象過(guò)點(diǎn)(1,3),得g(1)=3,
又g(1)=f(0),
∴f(0)=g(1)=3,
∴f(2012)+g(2013)=2f(0)=6.
故選:A.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和周期性的應(yīng)用,利用條件推導(dǎo)函數(shù)f(x)是周期函數(shù)是解決本題的關(guān)鍵,綜合考查了學(xué)生的運(yùn)算推導(dǎo)能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\sqrt{2},+∞)$ | B. | (-∞,-1) | C. | (5,+∞) | D. | (-1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=\sqrt{x}$ | B. | y=2|x| | C. | y=x2+x+1 | D. | y=2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com