16.設F1、F2分別是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左,右焦點,P為橢圓上任一點,點M的坐標為(3,3),則|PM|-|PF2|的最小值為( 。
A.5B.$\sqrt{13}$C.1D.$-\sqrt{13}$

分析 由題意畫出圖形,利用橢圓定義把|PM|-|PF2|轉(zhuǎn)化為|PM|-(2a-|PF1|)=(|PM|+|PF1|)-4.然后求出|MF1|得答案.

解答 解:如圖,
由橢圓方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,得a=2,2a=4.
由橢圓定義知:|PF2|=2a-|PF1|,
∴|PM|-|PF2|=|PM|-(2a-|PF1|)=(|PM|+|PF1|)-4.
連接MF1 交橢圓于P,則P為滿足條件的點.
此時|PM|+|PF1|最小,則(|PM|+|PF1|)-4最。
∵F1(-1,0),M(3,3),
∴$|M{F}_{1}|=\sqrt{(3+1)^{2}+(3-0)^{2}}=5$,
∴|PM|-|PF2|的最小值為1.
故選:C.

點評 本題考查橢圓的簡單性質(zhì),考查了橢圓中最值的求法,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x}{x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)證明:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{3}^{n}}{2}$anan+1,Sn=b1+b2+…+bn,求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設x,y滿足約束條件:$\left\{\begin{array}{l}{y≤x+1}\\{y≤2}\\{2x+y≤7}\end{array}\right.$,則z=x+y的最大值與最小值分別為(  )
A.$\frac{7}{2}$,3B.5,$\frac{7}{2}$C.5,3D.4,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)和g(x)的定義域均為R,f(x)是偶函數(shù),g(x)是奇函數(shù),且g(x)的圖象過點(1,3),g(x)=f(x-1),則f(2012)+g(2013)=( 。
A.6B.4C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=lg(x2-2x)的單調(diào)增區(qū)間為(  )
A.(2,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,左右頂點分別為A1,A2,過F1作斜率不為0的直線l與橢圓交于A,B兩點,△ABF2的周長為8.橢圓上一點P與A1,A2連線的斜率之積${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$(點P不是左右頂點A1,A2).
(Ⅰ)求該橢圓方程;
(Ⅱ)已知定點M(0,m)(其中常數(shù)m>0),求橢圓上動點N與M點距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的斜率為$\sqrt{2}$,且右焦點與拋物線${y^2}=4\sqrt{3}x$的焦點重合,則該雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則2$\overrightarrow{a}$-3$\overrightarrow$的模長為$\sqrt{61}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(x+1)=2x+1,則f(1)等于( 。
A.3B.-3C.1D.-1

查看答案和解析>>

同步練習冊答案