【題目】如圖,△OAB是等腰三角形,∠AOB=120°.以O為圓心, OA為半徑作圓.
(1)證明:直線AB與⊙O相切;
(2)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.
【答案】
(1)證明:設K為AB中點,連結OK,
∵OA=OB,∠AOB=120°,
∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,
∴直線AB與⊙O相切;
(2)解:因為OA=2OD,所以O不是A,B,C,D四點所在圓的圓心.設T是A,B,C,D四點所在圓的圓心.
∵OA=OB,TA=TB,
∴OT為AB的中垂線,
同理,OC=OD,TC=TD,
∴OT為CD的中垂線,
∴AB∥CD
【解析】(1)設K為AB中點,連結OK.根據等腰三角形AOB的性質知OK⊥AB,∠A=30°,OK=OAsin30°= OA,則AB是圓O的切線.(2)設圓心為T,證明OT為AB的中垂線,OT為CD的中垂線,即可證明結論.
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點。
(1)求橢圓C的標準方程。
(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足: 。試問:直線AB的斜率是否為定值?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數f(x)的單調區(qū)間;
(2)當m≥1時,討論函數f(x)與g(x)圖象的交點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣ x3+bx2+cx+bc.
(1)若函數f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調遞增區(qū)間,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程是 (φ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為.
(1)求點A,B,C,D的直角坐標;
(2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=kx2+(3+k)x+3,其中k為常數,且k≠0.
(1)若f(2)=3,求函數f(x)的表達式;
(2)在(1)的條件下,設函數g(x)=f(x)﹣mx,若g(x)在區(qū)間[﹣2,2]上是單調函數,求實數m的取值范圍;
(3)是否存在k使得函數f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com