指針位置 | A區(qū)域 | B區(qū)域 | C區(qū)域 |
返券金額(單位:元) | 60 | 30 | 0 |
分析 (1)依題意知,ξ服從二項分布ξ~B(n,p),再由二項分布的期望公式與二項分布的方差公式可得方程組,進(jìn)而求出p與n的值.
(2)設(shè)指針落在A,B,C區(qū)域分別記為事件A,B,C,再計算出P(A)=$\frac{1}{6}$,P(B)=$\frac{1}{3}$,P(C)=$\frac{1}{2}$,以及隨機(jī)變量η的可能值為0,30,60,90,120,然后根據(jù)相互獨(dú)立事件的概率乘法公式分布得到其發(fā)生的概率,假若求出離散型隨機(jī)變量的分布列與期望.
解答 解:(1)依題意知,ξ服從二項分布ξ~B(n,p)
∴Eξ=np=$\frac{1}{25}$----------------①
又Dξ=(σξ)2=np(1-p)=$\frac{99}{2500}$----②
由①②聯(lián)立解得:n=4,p=$\frac{1}{100}$;
(2)設(shè)指針落在A,B,C區(qū)域分別記為事件A,B,C.則P(A)=$\frac{1}{6}$,P(B)=$\frac{1}{3}$,P(C)=$\frac{1}{2}$.
由題意得,該顧客可轉(zhuǎn)動轉(zhuǎn)盤2次.
隨機(jī)變量η的可能值為0,30,60,90,120.
P(η=0)=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$
P(η=30)=$\frac{1}{2}×\frac{1}{3}×2$=$\frac{1}{3}$
P(η=90)=$\frac{1}{3}×\frac{1}{6}×2$=$\frac{1}{9}$
P(η=60)=$\frac{1}{2}×\frac{1}{6}×2$+$\frac{1}{3}×\frac{1}{3}$=$\frac{5}{18}$
P(η=120)=$\frac{1}{6}×\frac{1}{6}$=$\frac{1}{36}$.
所以,隨機(jī)變量η的分布列為:
P | 0 | 30 | 60 | 90 | 120 |
η | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{5}{18}$ | $\frac{1}{9}$ | $\frac{1}{36}$ |
點(diǎn)評 解決此類問題的關(guān)鍵是熟練掌握二項分布的期望與方差公式與離散型隨機(jī)變量的分布列、期望、方差,以及相互獨(dú)立事件的概率乘法公式,此題屬于中檔題,是高考經(jīng)常涉及的考點(diǎn)之一.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com