分析 (1)由Sn=2(an-n)=2an-2n,n∈N+*,得Sn-1=2an-1-2(n-1),n≥2,從而an+2=2(an-1+2),n≥2,由此能證明{an+2}是首項為4,公比為2的等比數(shù)列,并能求出{an}的通項公式.
(2)由bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,由此利用裂項求和法能求出數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和.
解答 證明:(1)∵數(shù)列{an}的前n項和為Sn,滿足Sn=2(an-n)=2an-2n,n∈N+*,
∴Sn-1=2an-1-2(n-1),n≥2,
∴Sn-Sn-1=an=2an-2an-1-2,n≥2,
∴an+2=2(an-1+2),n≥2,
當(dāng)n=1時,S1=2a1-2=a1,解得a1=2,a1+2=4,
∴{an+2}是首項為4,公比為2的等比數(shù)列.
∴${a}_{n}+2=4×{2}^{n-1}={2}^{n+1}$,
∴${a}_{n}={2}^{n+1}-2$.
(2)∵bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和:
Tn=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$
=$\frac{1}{2}-\frac{1}{n+2}$.
點評 本題考查等比數(shù)列的證明和數(shù)列的通項公式及前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意構(gòu)造法和裂項求和法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥-1 | B. | a>1 | C. | a>2 | D. | a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有心理障礙 | 沒有心理障礙 | 總計 | |
女生 | 10 | 30 | |
男生 | 70 | 80 | |
總計 | 20 | 110 |
P(X2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com