【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.( )
D.(﹣∞,﹣ ,)
【答案】B
【解析】解:∵函數(shù)f(x)=ln(1+|x|)﹣ 為偶函數(shù),且在x≥0時(shí),f(x)=ln(1+x)﹣ ,
導(dǎo)數(shù)為f′(x)= + >0,
即有函數(shù)f(x)在[0,+∞)單調(diào)遞增,
∴f(x)>f(2x﹣1)等價(jià)為f(|x|)>f(|2x﹣1|),
即|x|>|2x﹣1|,
平方得3x2﹣4x+1<0,
解得: <x<1,
所求x的取值范圍是( ,1).
故選:B.
根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解甲、乙兩名同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他們的次數(shù)學(xué)測(cè)試成績(滿分分)進(jìn)行統(tǒng)計(jì),作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學(xué)成績的中位數(shù)是,乙同學(xué)成績的平均分是分.
(1)求和的值;
(2)現(xiàn)從成績?cè)?/span>之間的試卷中隨機(jī)抽取兩份進(jìn)行分析,求恰抽到一份甲同學(xué)試卷的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為: ,(θ∈[﹣ , ]),曲線C: (t為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點(diǎn)Q,求|AQ|﹣|BQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時(shí)刻(時(shí))的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達(dá)式,并規(guī)定當(dāng)時(shí)為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時(shí),該市市中心的綜合污染指數(shù)不超標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=( )
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“過大年,吃水餃”是我國不少地方過春節(jié)的一大習(xí)俗.2018年春節(jié)前夕,A市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃作樣本,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo),檢測(cè)結(jié)果如頻率分布直方圖所示.
(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若該品牌的速凍水餃的某項(xiàng)質(zhì)量指標(biāo)Z服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求Z落在內(nèi)的概率;
② 若某人從某超市購買了1包這種品牌的速凍水餃,發(fā)現(xiàn)該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值為55,根據(jù)原則判斷該包速凍水餃某項(xiàng)質(zhì)量指標(biāo)值是否正常
附:①;
②若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求證:直線DE⊥平面PAC.
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com