4.已知f(x)是定義在R上的奇函數(shù),對任意x>0,都有f(x+4)=f(x),若f(-2)=2,則f(2 018)等于( 。
A.2 012B.2C.2 013D.-2

分析 根據函數(shù)奇偶性和周期性的性質進行轉化求解即可.

解答 解:∵對任意x>0,都有f(x+4)=f(x),
∴當x>0時,函數(shù)的周期是4,
則f(2 018)=f(4×504+2)=f(2),
∵f(x)是定義在R上的奇函數(shù),若f(-2)=2,
∴f(-2)=-f(2)=2,
則f(2)=-2,
即f(2 018)=f(2 )=-2,
故選:D

點評 本題主要考查函數(shù)值的計算,根據函數(shù)奇偶性和周期性的性質進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.下列四個命題中:
①“等邊三角形的三個內角均為60°?”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若ab≠0,則a≠0”的否命題.
其中真命題的個數(shù)是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.給出一個算法:

根據以上算法,可求得f(-1)+f(3)的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.方程lnx+2x-6=0的近似解所在的區(qū)間是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.當0<a<1時,不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$的解集是($\frac{1}{2}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)y=$\frac{{x}^{2}+13x+36}{x}$的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知a>b>0,則方程a2x2+b2y2=1與ax+by2=0的曲線在同一坐標系中大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,則輸出S的值為( 。
A.$\frac{tan2017°-tan1949°}{tan1°}$-67B.$\frac{tan2016°-tan1949°}{tan1°}$-67
C.$\frac{tan2017°-tan1949°}{tan1°}$-68D.$\frac{tan2016°-tan1949°}{tan1°}$-68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若不等式 $m>n與\frac{1}{m}>\frac{1}{n}(m,n∈R)$ 同時成立,則 ( 。
A.m>0>nB.0>m>n
C.m>n>0D.m,n與0的大小關系不確定

查看答案和解析>>

同步練習冊答案