【題目】函數(shù)f(x)= x3﹣ax2﹣4在(3,+∞)上是增函數(shù),則實數(shù)a的取值范圍為
【答案】(﹣∞, ]
【解析】解:∵f(x)= x3﹣ax2﹣4在(3,+∞)上是增函數(shù),
∴f′(x)≥0恒成立,
即f′(x)=x2﹣2ax≥0在(3,+∞)上恒成立,
即x﹣2a≥0在(3,+∞)上恒成立,
即a≤ 在(3,+∞)上恒成立,
∵x>3,∴ > ,
則a≤ ,
所以答案是:(﹣∞, ]
【考點精析】認真審題,首先需要了解函數(shù)單調(diào)性的性質(zhì)(函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集),還要掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實數(shù)的取值范圍;
(2)若關(guān)于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù). 當(dāng)x≥0時,f(x)= ,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班上有四位同學(xué)申請A,B,C三所大學(xué)的自主招生,若每位同學(xué)只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.
(1)求恰有2人申請A大學(xué)或B大學(xué)的概率;
(2)求申請C大學(xué)的人數(shù)X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎勵方案,試用數(shù)學(xué)語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)設(shè)向量 與 的夾角為β,求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)在上為增函數(shù),求m的取值范圍;
(2)若f(x)的值域為R,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在其定義域內(nèi)有兩個不同的極值點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)記兩個極值點分別為, (),求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com