14.若a,b∈R,i為虛數(shù)單位,且a+2i=i(b+i),則a+b=1.

分析 利用復(fù)數(shù)相等的充要條件,列出方程組,求解即可.

解答 解:a,b∈R,i為虛數(shù)單位,且a+2i=i(b+i),
可得$\left\{\begin{array}{l}a=-1\\ 2=b\end{array}\right.$,
∴a+b=1.
故答案為:1.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的相等的充要條件,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且x1≠x2時(shí).總有f(x1)≠f(x2),則稱f(x)為“唯一函數(shù)”.例如,函數(shù)f(x)=3x-2(x∈R)是“唯一函數(shù)”.下列說法中正確的是(  )
①函數(shù)f(x)=x2+1(x∈R)是“唯一函數(shù)”;
②若f(x)為“唯-函數(shù)”,x1,x2∈A且f(x1)=f(x2).則x1=x2
③在定義城上單調(diào)的函數(shù)一定是“唯一函數(shù)”;
④若f(x)為“唯一函數(shù)”,則函數(shù)f(x)在定義域上是單調(diào)函數(shù).
A.②③④B.②③C.②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對(duì)任意非零實(shí)數(shù)a,b,定義a?b的算法原理如程序框圖所示.設(shè)a為函數(shù)y=x2-2x+3(x∈R)的最小值,b為拋物線y2=8x的焦點(diǎn)到準(zhǔn)線的距離,則計(jì)算機(jī)執(zhí)行該運(yùn)算后輸出結(jié)果是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{m}$-y2=1(m>0)的離心率為$\frac{2\sqrt{3}}{3}$,則m的值為( 。
A.$\frac{2\sqrt{3}}{3}$B.3C.8D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知田徑隊(duì)有男運(yùn)動(dòng)員36人,女運(yùn)動(dòng)員24人,若用分層抽樣的方法從該隊(duì)的全體運(yùn)動(dòng)員中抽取一個(gè)容量為20的樣本,則抽取男運(yùn)動(dòng)員的人數(shù)為(  )
A.9B.12C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若α是銳角,且cos(α+$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,則sinα的值等于( 。
A.$\frac{\sqrt{6}+3}{6}$B.$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義:若對(duì)定義域D內(nèi)的任意兩個(gè)x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,則稱函數(shù)y=f(x)是D上的“平緩函數(shù)”.則以下說法正確的有( 。
①f(x)=-lnx+x為(0,+∞)上的“平緩函數(shù)”
②g(x)=sinx為R上的“平緩函數(shù)”
③h(x)=x2-x是為R上的“平緩函數(shù)”
④已知函數(shù)y=k(x)為R上的“平緩函數(shù)”,若數(shù)列{an}對(duì)?n∈N*總有|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,則k(xn+1)-k(x1)<$\frac{1}{4}$.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式組$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x>0}\end{array}\right.$的解集是( 。
A.{x|-1<x<1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.平面內(nèi)到兩定點(diǎn)F1、F2的距離之比等于常數(shù)m(m>0且m≠1)的點(diǎn)的軌跡稱為阿波羅尼斯圓,已知曲線C是平面內(nèi)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)距離之比等于常數(shù)m(m>0,m≠1)的點(diǎn)的軌跡,下面選項(xiàng)正確的是( 。
A.曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱B.曲線C關(guān)于y軸對(duì)稱
C.曲線C關(guān)于x軸對(duì)稱D.曲線C過坐標(biāo)原點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案