精英家教網 > 高中數學 > 題目詳情

已知橢圓的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為的正方形(記為
(Ⅰ)求橢圓的方程
(Ⅱ)設點是直線軸的交點,過點的直線與橢圓相交于兩點,當線段的中點落在正方形內(包括邊界)時,求直線斜率的取值范圍

(Ⅰ) 橢圓的方程為;(Ⅱ)直線斜率的取值范圍為

解析試題分析:(I)求橢圓的方程,設出橢圓的方程,根據正方形的面積為,求出橢圓中參數的值且判斷出參數的關系,根據橢圓的三個參數的關系求出的值,從而得到橢圓的方程.(II)設出直線的方程,將直線的方程與橢圓方程聯(lián)立,利用二次方程的韋達定理,可得到弦中點的坐標,當線段的中點落在正方形內部(包括邊界),得到中點的坐標滿足的不等關系,即,從而可求的的范圍.
試題解析:(Ⅰ)依題意,設橢圓C的方程為=1(a>b>0),焦距為2c,
由題設條件知,a2="8,b=c," 所以b2=a2=4
故橢圓C的方程為=1             (4分) 
(Ⅱ)橢圓C的左準線方程為x=-4,所以點P的坐標為(-4,0),
顯然直線l的斜率k存在,所以直線的方程為y=k(x+4)。
如圖,設點M,N的坐標分別為(x1,y1),(x2,y2),線段MN的

中點為G(x0,y0), 由
得(1+2k2)x2+16k2x+32k2-8=0      ①  (6分)
由D=(16k2)2-4(1+2k2)(32k2-8)>0
解得<k<      ②       (7分)
因為x1,x2是方程①的兩根,所以x1+x2=,
于是x0==,y0=k(x0+4)=   (8分)
∵x0=≤0,所以點G不可能在y軸的右邊.     (9分)
又直線F1B2,F1B1方程分別為y=x+2,y=-x-2
所以點G在正方形Q內(包括邊界)的充要條件為
                 (10分)
解得≤k≤,此時②也成立.    (12分)
故直線l斜率的取值范圍是[,].    (13分)
考點:直線與圓錐曲線的綜合問題;橢圓的標準方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點中點,求直線的方程;
(2)設拋物線的焦點為,當時,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓(a>b>0)的離心率為,右焦點為(,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點且斜率為k的直線與橢圓交于點A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓兩焦點坐標分別為,,且經過點
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知點,直線與橢圓交于兩點.若△是以為直角頂點的等腰直角三角形,試求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,設F(-c,0)是橢圓的左焦點,直線l:x=-與x軸交于P點,MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|。

(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點P的直線m與橢圓相交于不同的兩點A,B。
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.

(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.

查看答案和解析>>

同步練習冊答案