四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,E是側(cè)棱PD的中點(diǎn).
(I)求證:PB∥平面ACE;
(Ⅱ)求證:PA⊥平面ABCD;
(Ⅲ)若PA=2,求三棱錐P-ABE的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)判斷EO∥PB,EO?平面ACE;PB?平面ACE得出:PB∥平面ACE;
(Ⅱ)判斷PB⊥BC,且PB∩AB=B,PA⊥平面ABCD;
(Ⅲ)AB⊥面PAD,VP-ABE=VB-PAE=
1
3
S△PAE•AB,運(yùn)用求解即可.
解答: 解:(Ⅰ)證明:連接BD交AC與O,連接EO,
∵底面ABCD是正方形,
∴O為BD的中點(diǎn),
∵又E為PD的中點(diǎn),
∴在△PBD中,EO為其中位線,
∴EO∥PB,
∵EO?平面ACE;PB?∴
∴PB∥平面ACE;
(Ⅱ)證明:∵底面ABCD是邊長(zhǎng)為2的正方形,
∴AB⊥BC,
∵PB⊥BC,且PB∩AB=B,
∴BC⊥面PAB,
∵PA?平面PAB,∴PA⊥BC,
同理可證PA⊥CD,
∵BC∩CD=C,BC?面ABCD,CD?面ABCD,
∴PA⊥平面ABCD;
(Ⅲ)解:由(Ⅱ)知PA⊥AB,
又AB⊥AD,
∴AB⊥面PAD,
∵PA=2,在Rt△PAD中,E為PD的中點(diǎn),
∴S△PAE=
1
2
S△PAD
1
2
×(
1
2
×2×2)
=1,
∴VP-ABE=VB-PAE=
1
3
S△PAE•AB=
1
3
×1×2
=
2
3
,
點(diǎn)評(píng):本題考查空間幾何體的性質(zhì),證明直線平面的垂直,求解體積問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=2logax+[loga2(x+1)-1]i(a>0,a≠1)等于零,求x,a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,△ABC是等腰直角三角形,AC=BC=4,E,F(xiàn)分別為AC,AB的中點(diǎn),將△AEF沿EF對(duì)折,使A′在平面BCEF上的射影O恰好為EC中點(diǎn),得到圖②,若M為A′B的中點(diǎn).
(1)FM∥平面A′CE;
(2)求證:平面EFM⊥平面A′CF;
(3)求三棱錐F-A′BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|x-4|.
(1)寫出f(x)的單調(diào)區(qū)間;
(2)設(shè)m>0,求f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列.
(1)若a1=2,且a2,a3,a4+1成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式an;
(2)在(1)的條件下,數(shù)列{an}的前n和為Sn,設(shè)bn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,若對(duì)任意的n∈Φ,不等式bn≤k恒成立,求實(shí)數(shù)k的最小值;
(3)若數(shù)列{an}中有兩項(xiàng)可以表示為某個(gè)整數(shù)c(c>1)的不同次冪,求證:數(shù)列{an}中存在無(wú)窮多項(xiàng)構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖A、B分別是橢圓圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn),以AB為邊作正方形ABCD,若Q是橢圓的上頂點(diǎn),△QAB與正方形ABCD的面積之比為
1
8
,求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
,點(diǎn)P(
5
5
a
,
2
2
a
)在橢圓上,
(1)求橢圓的離心率;
(2)設(shè)點(diǎn)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上,且滿足|AQ|=|AO|,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+aex,其中a為實(shí)常數(shù).
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論f(x)在定義域R上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1)
(1)當(dāng)
a
b
時(shí),求tanx的值
(2)求f(x)=(
a
+
b
b
在[-
π
2
,0
]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案