我市某高中的一個綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(°C) 10 11 13 12 8 6
就診人數(shù)y(個) 22 25 29 26 16 12
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=bx+a.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
4
i=1
xi2=112+132+122+82=498;
4
i=1
xiyi11×25+13×29+12×26+8×16=1092.
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)利用公式求得回歸直線方程的系數(shù),可得回歸直線方程;
(2)根據(jù)條件代入x=6和x=10求得預(yù)報變量y值,驗證誤差是否小于2,可得線性回歸方程是否理想.
解答: 解:(1)
.
x
=
1
4
(11+13+12+8)=11
,
.
y
=
1
4
(25+29+26+16)=24
,
4
i=1
xiyi=11×25+13×29+12×26+8×16=1092
,
4
i=1
xi2=112+132+122+82=498
,
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
=
1092-4×11×24
498-4×112
=
18
7
,a=24-11×
18
7
=-
30
7
,
于是得到y(tǒng)關(guān)于x的回歸直線方程為y=
18
7
x-
30
7

(2)當x=10時,
?
y
=
150
7
,|
150
7
-22|<2
;
同樣,當x=6時,
?
y
=
78
7
,|
78
7
-12|<2

∴該小組所得線性回歸方程是理想的.
點評:本題考查了線性回歸方程的求法及應(yīng)用,利用最小二乘法求回歸直線方程的系數(shù)是解題的關(guān)鍵,運算要細心.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(x2-ax+3a)在區(qū)間[1,+∞)上單調(diào)遞增,則a的取值范圍是(  )
A、(-∞,2]
B、[-
1
2
,2]
C、(-
1
2
,2]
D、[2,12)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)(x∈R),
(1)求函數(shù)f(x)圖象的對稱軸;
(2)利用五點法作出函數(shù)f(x)在x∈[
π
6
,
6
]
的大致圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1
x

①判斷函數(shù)f(x)的奇偶性(要求說明理由);
②判斷函數(shù)f(x)在區(qū)間[0,+∞]上的單調(diào)性并證明;
③x∈[3,5]求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式
(1)
3x-5
x2+2x-3
≤2;                  
(2)x2-ax-2a2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
mx2+nx+2;
(1)如果函數(shù)f(x)有兩個極值點-1和2,求實數(shù)m、n的值;
(2)若函數(shù)f(x)有兩個極值點x1和x2,且x1∈[-1,1],x2∈[1,+∞],求(m-2)2+(n-1)2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanx=2,
(1)
2sinx+cosx
7cosx-sinx

(2)2sinxcosx+cos2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為考察某種藥物防治疾病的效果,對105只動物進行試驗,得到如下的列聯(lián)表:
藥物效果試驗列聯(lián)表
患病 未患病 總計
服用藥 10 45 55
沒服用藥 20 30 50
總計 30 75 105
(1)能否以97.5%的把握認為藥物有效?為什么?
(2)用分層抽樣方法在未患病的動物中隨機抽取5只,服用藥的動物應(yīng)該抽取幾只?
(3)在(2)所抽取的5只動物中任取2只,求恰有1只服用藥的動物的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示程序:
(1)若輸出的函數(shù)值 f(x)∈[-2,1],求輸入x的范圍;
(Ⅱ)根據(jù)如上程序,若函數(shù)g(x)=f(x)-m在R上有且只有兩個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案