下列命題中:
①若p、q為兩個命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若p為:存在x∈R,x2+2x+2≤0,則p為:任意x∈R,x2+2x+2>0;
③已知p是r的充分不必要條件,s是r的必要條件,q是s的必要條件,那么p是q成立的必要不充分條件;
④若a<0,-1<b<0,則ab>ab2>a.
所有正確命題的序號是
 
考點:命題的真假判斷與應用
專題:簡易邏輯
分析:①判斷充分性是否成立,再判定必要性是否成立,由此判斷正誤;
②特稱命題“存在x∈R,p(x)”的否定是“對任意x∈R,¬p(x)”,由此判斷正誤;
③判斷充分性是否成立,再判定必要性是否成立,即得判斷正誤;
④由不等式的性質即可判斷正誤.
解答: 解:①由于“p且q為真”,則p、q必全為真命題,
由于“p或q為真”,則p、q至少有一個真命題,
則“p且q為真”是“p或q為真”的充分不必要條件,故①不正確;
②若p為:存在x∈R,x2+2x+2≤0,則p為:任意x∈R,x2+2x+2>0,故②正確;
③已知p是r的充分不必要條件,則p⇒r為真命題,r⇒p為假命題,
由于s是r的必要條件,則r⇒s為真命題,
又由q是s的必要條件,則s⇒q為真命題,
那么p是q成立的充分不必要條件,故③不正確;
④由于a<0,-1<b<0,則ab>0,0>ab2>a,故④正確.
故答案為:②④
點評:本題以命題為載體,考查命題的真假判斷,理解定義,掌握必要的解題方法是解題的關鍵,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的離心率e=
3
2
,短軸長為2,點A(x1,y1),B(x2,y2)是橢圓上的兩點,
m
=(
x1
b
y1
a
)
,
n
=(
x2
b
,
y2
a
)
,且
m
n
=0

(1)求橢圓方程;
(2)若直線AB過橢圓的焦點F(0,c)(c為半焦距),求直線AB的斜率;
(3)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左、右兩個焦點,一條直線l經(jīng)過點F1與橢圓交于A、B兩點,且△ABF2的周長為8.
(1)求實數(shù)a的值;
(2)若l的傾斜角為
π
4
,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線的方程為y2=2px(p>0).
(1)當p=4時,求該拋物線上縱坐標為2的點到其焦點F的距離;
(2)已知該拋物線上一點P的縱坐標為t(t>0),過P作兩條直線分別交拋物線與A(x1,y1)、B(x2,y2),當PA與PB的斜率存在且傾斜角互補時,求證:
y1+y2
t
為定值;并用常數(shù)p、t表示直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準線的距離為
3
2

(1)求拋物線C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積;
(3)已知拋物線上一點M(4,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷:直線DE是否過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x,點P(a,b)在函數(shù)y=
1
x
(x>0)圖象上,那么f(a)•f(b)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤4
,則z=
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(x,y)滿足條件
0≤x≤1
0≤y≤1
y-x≥
1
2
則P點坐標為
 
時,z=4-2x+y取最大值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的有(  )
(1)很小的實數(shù)可以構成集合;
(2)集合{y|y=x2-1}與集合{t|t=x2-1}是同一個集合;
(3)1,
3
2
,
6
4
,|-
1
2
|,0.5
這些數(shù)組成的集合有5個元素;
(4)y=
1
x
的減區(qū)間為(-∞,0)∪(0,+∞).
A、0個B、1個C、2個D、3個

查看答案和解析>>

同步練習冊答案