A. | 16 | B. | 128 | C. | 32 | D. | 64 |
分析 數(shù)列a1,$\frac{{a}_{2}}{{a}_{1}}$,$\frac{{a}_{3}}{{a}_{2}}$,…,$\frac{{a}_{n}}{{a}_{n-1}}$,…是首項(xiàng)為1,公比為2的等比數(shù)列,可得當(dāng)n≥2時(shí),$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1,當(dāng)n=1時(shí),a1=1.利用an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1,即可得出,進(jìn)而判斷出.
解答 解:∵數(shù)列a1,$\frac{{a}_{2}}{{a}_{1}}$,$\frac{{a}_{3}}{{a}_{2}}$,…,$\frac{{a}_{n}}{{a}_{n-1}}$,…是首項(xiàng)為1,公比為2的等比數(shù)列,
∴當(dāng)n≥2時(shí),$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1,當(dāng)n=1時(shí),a1=1.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1
=2n-1•2n-2•…•22•21×1=2(n-1)+(n-2)+…+1=${2}^{\frac{n(n-1)}{2}}$.
∵只有64=${2}^{\frac{4×3}{2}}$滿足通項(xiàng)公式,
∴下列數(shù)中是數(shù)列{an}中的項(xiàng)是64.
故選:D.
點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式、“累乘求積”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-π,0)∪(π,+∞) | B. | (-∞,-π)∪(0,π) | C. | (-∞,-π)∪(π,+∞) | D. | (-π,0)∪(0,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪(2,+∞) | B. | (-∞,0)∪(0,+∞) | C. | (0,2) | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com