【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點ESD的中點.

(1)求證:直線SB∥平面ACE

(2)求證:直線AC⊥平面SBD

【答案】1)見解析(2)見解析

【解析】試題分析:(1)設(shè),根據(jù)三角形中位線性質(zhì)得OE∥SB,再根據(jù)線面平行判定定理得結(jié)論2SD⊥平面ABCD得AC⊥SD,由菱形性質(zhì)得AC⊥BD,再由線面垂直判定定理得結(jié)論

試題解析:證明:(1)設(shè),連接OE,由題,OBD的中點,ESD的中點,∴OE∥SB

又∵, ,∴

(2)∵ABCD為菱形,∴AC⊥BD,又∵SD⊥面ABCD, ,∴AC⊥SD,

,∴AC⊥SBD.

點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機抽取了8組數(shù)據(jù)作為研究對象,如下圖所示((噸)為買進(jìn)蔬菜的質(zhì)量, (天)為銷售天數(shù)):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;

(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(Ⅲ)根據(jù)(Ⅱ)中的計算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計需要銷售多少天.

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.

(1)證明: 平面;

(2)求直線與平面所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為的菱形, , 平面, 平面, .

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的兩條對角線相交于點 邊所在直線的方程為,點邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC.

(1)特殊情形:如圖1,當(dāng)DE∥BC時,有DBEC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,,,點在線段上.

(Ⅰ)證明;

(Ⅱ)若中點,證明平面;

(Ⅲ)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面平面分別為棱的中點.求證:

(1)平面;

(2)平面.

查看答案和解析>>

同步練習(xí)冊答案