【題目】如圖,在三棱柱ABCA1B1C1中,已知AB側(cè)面BB1C1CABBC=1,BB1=2,∠BCC1 .

(1)求證:C1B平面ABC;

設(shè) (0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,

試求λ的值.

【答案】(1)見解析(2)1

【解析】試題分析:(1)先由線面垂直的性質(zhì)證明,再根據(jù)余玄定理及勾股定理證明,利用直線與平面垂直的判斷定理證明平面;(2)通過兩兩垂直.為原點(diǎn),所在直線軸建立空間直角坐標(biāo)系.求出相關(guān)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量,平面BB1E的一個(gè)法向量,通過向量的數(shù)量積,推出的方程,求解即可.

試題解析:(1)證明:因?yàn)?/span>AB⊥側(cè)面BB1C1C,BC1側(cè)面BB1C1C,故ABBC1.

在△BCC1中,BC=1,CC1BB1=2,∠BCC1,

BCBC2CC-2BC·CC1·cos∠BCC1=12+22-2×1×2×cos=3.

所以BC1,故BC2BCCC,所以BCBC1

BCABB 所以C1B⊥平面ABC.

(2)由(1)可知,ABBCBC1兩兩垂直.以B為原點(diǎn),BC,BABC1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系.

B(0,0,0),A(0,1,0),B1(-1,0,),C(1,0,0),C1(0,0,).

所以=(-1,0,),所以=(-λ,0,λ),則E(1-λ,0,λ).

則=(1-λ,-1,λ),=(-1,-1,).

設(shè)平面AB1E的法向量為n=(x,yz),

則即

z,則x,y

n是平面AB1E的一個(gè)法向量.

因?yàn)?/span>AB⊥平面BB1C1C,所以=(0,1,0)是平面BB1E的一個(gè)法向量,

所以|cos〈n,〉|=

.

兩邊平方并化簡得2λ2-5λ+3=0,所以λ=1或λ (舍去).

故所求λ的值為1

【方法點(diǎn)晴】本題主要考查線面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),證明:;

3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

購買意愿強(qiáng)

購買意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四種說法:

①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點(diǎn)的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)某種產(chǎn)品時(shí)的能耗y與產(chǎn)品件數(shù)x之間的關(guān)系式為y=ax+.且當(dāng)x=2時(shí),y=100;當(dāng)x=7時(shí),y=35.且此產(chǎn)品生產(chǎn)件數(shù)不超過20件.

(1)寫出函數(shù)y關(guān)于x的解析式;

(2)用列表法表示此函數(shù),并畫出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,記

。

(1) 判斷的奇偶性(不用證明)并寫出的單調(diào)區(qū)間;

(2)若對(duì)于一切恒成立,求實(shí)數(shù)的取值范圍.

(3)對(duì)任意,都存在,使得, .若,求實(shí)數(shù)的值;

查看答案和解析>>

同步練習(xí)冊(cè)答案