如圖,B點坐標(biāo)為(2,0),P是以O(shè)為圓心的單位圓上的動點,∠POB的平分線交直線PB于Q,求點Q的軌跡方程.
考點:軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)點Q的坐標(biāo)為(x,y),點P的坐標(biāo)為(x0,y0),由三角形內(nèi)角平分線定理寫出方程組,解出x0和y0,代入已知圓的方程即可.
解答: 解:解:在△BOP中,∵OQ是BOP的平分線,
|BQ|
|QP|
=
|OB|
|OP|
=2,
設(shè)Q點坐標(biāo)為(x,y),P點坐標(biāo)為(x0,y0),
x=
2+2x0
1+2
y=
0+2y0
1+2
,即
x0=
3x-2
2
y0=
3y
2
,
∵P(x0,y0)在圓x2+y2=1上運動,
∴x02+y02=1,
(
3x-2
2
)2+(
3y
2
)2=1

(x-
2
3
)2+y2=
4
9
點評:本題考查代入法求軌跡方程,考查了內(nèi)角平分線定理,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(a+1)x-
1
x-2

(1)解關(guān)于a的不等式f(3)≥2-
a
a+1
;
(2)當(dāng)a≥-
1
2
時,解關(guān)于x的不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點,長軸長為4,短軸長為2,點P是橢圓上異于A,B的任意一點,直線l:x=3與PA,PB分別交于M,N兩點,做以MN為直徑的圓,設(shè)此圓圓心為Q.
(1)求橢圓的標(biāo)準方程;
(2)圓Q恒過x軸上兩個定點,求這兩個定點的坐標(biāo);
(3)試判斷PQ直線與橢圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓C:x2+y2-2x-1=0關(guān)于直線x-y+1=0的對稱圓C′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點,點A(-1,1),若點M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上一個動點.
(1)求
OA
OM
的取值范圍;
(2)求目標(biāo)函數(shù)z=2x+y的最小值;
(3)求目標(biāo)函數(shù)z=
y-1
x+1
的取值范圍;
(4)求目標(biāo)函數(shù)z=
(x+1)2+(y-1)2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:集合A={x|-3≤x≤4,x∈R},集合B={x|x-a+1>0,x∈R}(a是參數(shù)).
(1)求CRA(A在R中的補集),若a=1,求A∪B.(R是實數(shù)集)
(2)若A∩B=∅,求實數(shù)a的取值范圍.
(3)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C的對邊分別為a,b,c,若a=2
3
,A=
π
3
,則此三角形周長的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱的體積是20π立方厘米,側(cè)面積是40π立方厘米,那么它的高是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于不等式的說法正確的是( 。
A、若a>b,則
1
a
1
b
B、若a>b,則a2>b2
C、若0>a>b,則
1
a
1
b
D、若0>a>b,則a2>b2

查看答案和解析>>

同步練習(xí)冊答案