【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
【答案】(I);(II)增區(qū)間是, ,減區(qū)間是;(III)最大值為,最小值為.
【解析】試題分析:(I)求出,由解得,根據(jù)導(dǎo)數(shù)的幾何意義可得切線斜率,利用點(diǎn)斜式可得切線方程;(II)求出, 得增區(qū)間, 得減區(qū)間;(III)根據(jù)(II)求出函數(shù)的極值,與區(qū)間端點(diǎn)出的函數(shù)值進(jìn)行比較即可得結(jié)果.
試題解析:(I).
由知,解得
從而
所以,
曲線在點(diǎn)處的切線方程為
即.
(II)由于,當(dāng)變化時(shí), 的變化情況如下表:
0 | 0 | ||||
單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
故的單調(diào)增區(qū)間是, ,單調(diào)減區(qū)間是.
(III)由于
故函數(shù)在區(qū)間上的最大值為,最小值為.
【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值、導(dǎo)數(shù)的幾何意義,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大。.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;
(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn),記直線的斜率分別為,當(dāng)最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象在處的切線過(guò)點(diǎn), .
(1)若,求函數(shù)的極值點(diǎn);
(2)設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,證明: .(提示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿(mǎn)足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域?yàn)椋?/span> )
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=4.
(1)直線l1: 與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1 , y1)、P(x2 , y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為M1 , 點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為M2 , 如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)mn是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,并且滿(mǎn)足,且,當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性,并給出證明;
(3)如果,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com