雙曲線的一個焦點到一條漸近線的距離為( )
A.a(chǎn)
B.b
C.c
D.
【答案】分析:先求雙曲線的一個焦點與一條漸近線方程,再利用點到直線的距離公式可求.
解答:解:雙曲線的一個焦點為(c,0),一條漸近線,∴焦點到漸近線的距離為,
故選B.
點評:本題主要考查雙曲線的幾何性質(zhì),考查點到直線的距離,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)已知雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),雙曲線的一個焦點到一條漸近線的距離為
5
3
c
(c為雙曲線的半焦距長),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•臨沂二模)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且經(jīng)過點A(-3,2
3
)的雙曲線的一個焦點到一條漸近線的距離是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且經(jīng)過點(-3,2
3
)
的雙曲線的一個焦點到一條漸近線的距離是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,雙曲線的一個焦點到一條漸近線的距離為
5
3
c(c為雙曲線的半焦距長),則雙曲線的離心率為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與雙曲線
y2
16
-
x2
9
=1
有共同的漸近線,且經(jīng)過點A(-3,2
3
)
的雙曲線的一個焦點到一條漸近線的距離是
2
2

查看答案和解析>>

同步練習冊答案