分別用區(qū)間,數(shù)軸把下列數(shù)值的范圍表示出來:
(1)-3<x<-1
(2)-
2
3
≤x≤0
(3)x≥-4
(4)x<2
(5)1<x≤3.5
(6)x≥0
(7)x≥0
(8)x<0.
考點(diǎn):區(qū)間與無窮的概念,集合的表示法
專題:作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:依次寫成區(qū)間的形式,作出數(shù)軸即可.
解答: 解:(1)(-3,-1),
(2)[-
2
3
,0],
(3)[-4,+∞),;
(4)(-∞,2),;
(5)(1,3.5],
(6)[0,+∞),;
(7)[0,+∞),;
(8)(-∞,0),
點(diǎn)評(píng):本題考查了學(xué)生的區(qū)間的寫法的掌握,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量M={
a
|
a
=(1,2)+m(4,4)m∈R},N={
a
|
a
=(-2,2)+n(4,5)n∈R },則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,A1B1⊥B1C1,AB=BC=BB1=2,M是BC1的中點(diǎn).
(Ⅰ)證明:BC1⊥平面A1B1M;
(Ⅱ)求三棱錐M-A1B1B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+2)-loga(2-x),a>0且a≠1.
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)若0<a<1,解關(guān)于x的不等式f(a4x-1-2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
x-1
x

(Ⅰ)求此函數(shù)的單調(diào)區(qū)間及最值;
(Ⅱ)求證:對(duì)于任意正整數(shù)n,均有1+
1
2
+
1
3
+…+
1
n
≥ln
en
1×2×3×…×n
(e為自然對(duì)數(shù)的底數(shù));
(Ⅲ)是否存在過點(diǎn)(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=2009x+log2009x,則方程f(x)=0的實(shí)根個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法求函數(shù)f(x)=2x3+3x-3在(0,1)上的一個(gè)近似零點(diǎn).(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:
(1)y=
1
x-1
-1
;      
(2)y=
(x+1)0
|x|-x
;
(3)已知函數(shù)y=f(2x+1)的定義域?yàn)椋?,1),求函數(shù)y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,若f(2m-1)>f(3),則m的取值范圍為( 。
A、(2,+∞)
B、(-∞,-1)
C、(-1,2)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案