已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.

(1)求軌跡E的方程;

(2)若直線l過點F2且與軌跡E交于P、Q兩點,①無論直線l繞F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.②過P、Q作直線x=的垂線PA、QB,垂足分別為A、B,是否存在直線l,滿足|PA|+|QB|=|AB|,若存在,求出l的方程;若不存在,請說明理由.

解:(1)由|PF1|-|PF2|=2<|F1F2|知,點P的軌跡E是以F1、F2為焦點的雙曲線右支.由c=2,2a=2,得b2=3.

軌跡E的方程為x2=1(x≥1).

(2)當直線l的斜率存在時,設直線l的方程為y=k(x-2),P(x1,y1),Q(x2,y2),將l的方程與雙曲線方程聯(lián)立,消y得(k2-3)x2-4k2x+4k2+3=0.解得k2>3.

①∵·=(x1-m)(x2-m)+y1y2=(k2+1)x1x2-(2k2+m)(x1+x2)+m2+4k2=+m2,

∵MP⊥MQ,

·=0,即3(1-m2)+k2(m2-4m-5)=0對任意的k2>3恒成立.

解得m=-1.當m=-1時,MP⊥MQ.

當直線l的斜率不存在時,由P(2,3),Q(2,-3)及M(-1,0)知結論也成立.

綜上,當m=-1時,MP⊥MQ.

②∵a=1,c=2,∴x=是雙曲線的右準線,假設存在直線l滿足條件,且斜率為k.

由雙曲線定義得:|PA|=|PF2|=|PF2|,|QB|=|QF2|,

∴|PQ|=|AB||x2-x1|=|y2-y1|=|k(x2-x1)|.

∴1=|k|.

∴k=±1.又k2>3,∴此時k不存在.

當直線的斜率不存在時,|PQ|=|AB|,此時不滿足題設.

故不存在滿足題設條件的直線l.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年赤峰二中模擬理) 已知F1(- 2, 0), F2 (2, 0), 點P滿足| PF1| - | PF2| = 2, 記點P的軌跡為E.

(Ⅰ) 求軌跡E的方程;

(Ⅱ) 若直線l過點F2且與軌跡E交于P、Q兩點,

①無論直線l繞點F2怎樣轉(zhuǎn)動, 在x軸上總存在定點M(m, 0), 使MP ^ MQ恒成立, 求實數(shù)m的值;

②過P、Q作直線x =的垂線PA、QB, 垂足分別為A、B, 記l =, 求l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆四川省成都外國語學校高三8月月考數(shù)學 題型:解答題

(本小題滿分12分)
已知F1(-2,0),F(xiàn)2(2,0),點P滿足∣PF1∣-∣PF2∣=2,記點P的軌跡為E.
(I)求軌跡E的方程
(II)若直線過點F2且與軌跡E交于P,Q兩點.無論直線繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省高三8月月考數(shù)學 題型:解答題

(本小題滿分12分)

已知F1(-2,0),F(xiàn)2(2,0),點P滿足∣PF1∣-∣PF2∣=2,記點P的軌跡為E.

(I)求軌跡E的方程

(II)若直線過點F2且與軌跡E交于P,Q兩點.無論直線繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2λ(λ為常數(shù)且0<λ≠2).

(1)求P點的軌跡曲線E的方程;

(2)當0<λ<2時,過點M(-λ,0)作兩直線l1、l2與曲線E相交于A、B兩點,若MA·MB=0且AB恒過點F2(2,0)時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知F1(-2,0),F2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.

(1)求軌跡E的方程;

(2)若直線l過點F2且與軌跡E交于P、Q兩點.

①無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.

②過P、Q作直線x=的垂線PA、QB,垂足分別為A、B,記λ=,求λ的取值范圍.

(文)已知等差數(shù)列{an}中,a1=-2,a2=1.

(1)求{an}的通項公式;

(2)調(diào)整數(shù)列{an}的前三項a1、a2、a3的順序,使它成為等比數(shù)列{bn}的前三項,求{bn}的前n項和.

查看答案和解析>>

同步練習冊答案