某幾何體的三視圖如圖,則它的體積是
 

考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可得該幾何體是一個四棱柱挖掉一個圓錐形成的組合體,分別求出棱柱和圓錐底面面積和高,代入可得答案.
解答: 解:由已知中的三視圖可得該幾何體是一個四棱柱挖掉一個圓錐形成的組合體,
棱柱是一個棱長為2的正方體,故V=8;
圓錐的底面直徑為2,故底面面積S=π,高h=2,故V=
3
,
故組合體的體積為:8-
3
,
故答案為:8-
3
點評:本題考查的知識點是由三視圖求體積,其中根據(jù)已知的三視圖判斷出幾何體的形狀是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x-4y≥0}則P={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為( 。
A、6B、6+π
C、12+πD、18+π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=2sin(2x+
π
3
)的圖象平移后所得的圖象對應(yīng)的函數(shù)為y=cos2x,則進行的平移是( 。
A、向右平移
π
12
個單位
B、向左平移
π
12
個單位
C、向右平移
π
6
個單位
D、向左平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

工廠生產(chǎn)某種電子元件,假設(shè)生產(chǎn)一件正品,可獲利200元;生產(chǎn)一件次品,則損失100元.已知該廠制造電子元件的過程中,次品率P與日產(chǎn)量x的函數(shù)關(guān)系是P=
3x
4x+32
(x∈N*
(1)將該產(chǎn)品的日盈利額T(元)表示為日產(chǎn)量x(件)的函數(shù);
(2)為獲得最大利潤,該廠的日產(chǎn)量應(yīng)定為多少件?并求出最大的利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
3
)(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
6
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式
kx2+kx+6
x2+x+2
>2
對任意的x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點F(1,0),M點在x軸上,點P在y軸上,且
MN
=2
MP
,PM⊥PF,當點P在y軸上運動.
(1)求點N的軌跡C的方程.
(2)設(shè)Q為直線x+1=0上的動點,過Q作C的兩條切線l1,l2,切點分別為A與B
     ①證明:l1⊥l2;
     ②證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=|x-1|-|x+2|的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)遠處一山頂D在西偏北15°的方向上,行駛5km后到達B處,測得此山頂在西偏北25°的方向上,仰角為8°,求高CD(精確到1m)

參考數(shù)據(jù):sin15°=0.259,sin8°=0.139,sin10°=0.174,sin25°=0.423,tan15°=0.268,tan8°=0.141,tan10°=0.176,tan25°=0.466.

查看答案和解析>>

同步練習冊答案