已知,的導(dǎo)函數(shù).
(Ⅰ)若,求的值;
(Ⅱ)若圖象與圖象關(guān)于直線對(duì)稱(chēng),△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為,角A為的初相,,求△ABC面積的最大值.

(Ⅰ);
(Ⅱ).

解析試題分析:(Ⅰ)             1分
依題意:  ∴               2分
                 5分
          6分
(Ⅱ) 
            8分
初相為,∴              9分
 ,即             10分
 (等號(hào)成立條件是
  ∴        11分
           12分
考點(diǎn):導(dǎo)數(shù)計(jì)算,和差倍半的三角函數(shù)公式,三角函數(shù)的圖象和性質(zhì),余弦定理的應(yīng)用,基本不等式的應(yīng)用。
點(diǎn)評(píng):中檔題,涉及三角函數(shù)圖象和性質(zhì)的研究,往往需要首先利用“三角公式”實(shí)現(xiàn)“化一”。本題運(yùn)用余弦定理,建立了a,b,c的關(guān)系式,應(yīng)用“基本不等式”確定三角形面積的最值。綜合性較強(qiáng),也比較典型。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)  
(1)求函數(shù)上的最大值和最小值.
(2)過(guò)點(diǎn)作曲線的切線,求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)當(dāng)x>0時(shí),求證:
(2)是否存在實(shí)數(shù)a使得在區(qū)間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當(dāng)時(shí),求證:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)試問(wèn)函數(shù)能否在處取得極值,請(qǐng)說(shuō)明理由;
(Ⅱ)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在區(qū)間[0,1]上是增函數(shù),在區(qū)間上是減函數(shù),又.
(1) 求的解析式;
(2) 若在區(qū)間(m>0)上恒有x成立,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).()
(1)當(dāng)時(shí),試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案