在平面直角坐標(biāo)系xOy中,點M(sin2θ,1)在角α的終邊上,點N(1,-2cos2θ)在角β的終邊上,且
OM
ON
=-
3
2

(1)求點M和N的坐標(biāo);
(2)求tan(α+β)的值.
考點:平面向量數(shù)量積的運算
專題:三角函數(shù)的求值,平面向量及應(yīng)用
分析:(1)由題意可得
OM
ON
的坐標(biāo),由數(shù)量積和同角三角函數(shù)的基本關(guān)系可得sin2θ和cos2θ,進(jìn)而可得點M和N的坐標(biāo);
(2)由三角函數(shù)的定義可得tanα和tanβ,由兩角和的正切公式可得.
解答: 解:(1)由題意可得
OM
=(sin2θ,1),
ON
=(1,-2cos2θ),
OM
ON
=sin2θ-2cos2θ=-
3
2
,
sin2θ-2(1-sin2θ)=-
3
2
,
解得sin2θ=
1
6
,cos2θ=
5
6

M(
1
6
,1)
,N(1,-
5
3
)

(2)由(1)得M(
1
6
,1)
,∴tanα=6,
N(1,-
5
3
)
,∴tanβ=-
5
3

tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
6-
5
3
1-6×(-
5
3
)
=
13
33
點評:本題主要考查平面向量的數(shù)量積,涉及兩角和正切公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是拋物線y2=4x上的點,且|AB|=8,則AB中點M的橫坐標(biāo)的最小值為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某種設(shè)備的使用年限x(年)與所支出的維修費用y(萬元),有如下統(tǒng)計資料:
X23456
y2.23.85.56.57.0
①對x、y進(jìn)行線性相關(guān)性檢驗;
②如果x、y具有線性相關(guān)關(guān)系,求出線性回歸方程;
③估計使用年限為8年,維修費用約是多少?
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
,r=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
n
i=1
y
2
1
-n
.
y
2
 

(已知:
s
i=1
xi2
=90,
s
i=1
yi2
=140.8,
s
i=1
xiyi
=112.3,
79
≈8.9,
2
≈1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知數(shù)列{an}滿足:a1=1,an+an+1=4n,Sn是數(shù)列{an}的前n項和;數(shù)列{bn}前n項的積為Tn,且Tn=
2n(1-n)
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)數(shù)列{
1
Sn+1-1
}的前n項和為Kn,證明:對于任意的n∈N*,都有Kn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1-an=(1-an+1)(1-an).
(1)令cn=
1
1-an
,證明:數(shù)列{cn}是等差數(shù)列,并求出{an}的通項公式.
(2)設(shè)bn=
1-
an+1
n
,其前n項和為Sn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|+|x-2|+k.
(Ⅰ)當(dāng)k=1時,解不等式:f(x)<3x;
(Ⅱ)若f(x)≥3恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)一種儀器,由于受生產(chǎn)能力與技術(shù)水平的限制,會產(chǎn)生一些次品.根據(jù)經(jīng)驗知道,該廠生產(chǎn)這種儀器,次品率p與日產(chǎn)量x(件)(x∈N*)之間大體滿足如框圖所示的關(guān)系(注:次品率P=
次品數(shù)
生產(chǎn)量
).又已知每生產(chǎn)一件合格的儀器可以盈利A(元),但每生產(chǎn)一件次品將虧損
A
2
(元).(其中c為小于96的常數(shù))
(1)若c=50,當(dāng)x=46 時,求次品率P;
(2)求日盈利額T(元)與日產(chǎn)量x(件)(x∈N*)的函數(shù)關(guān)系;
(3)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項數(shù)列{an}的前n項和為Sn滿足:Sn2+2nSn-22n+1=0.
(1)求數(shù)列{an}的通項公式;
(2)令bn=
2n-1
(Sn-1)(an-1)
,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述中,正確的有
 
(填序號)
①因為P∈α,Q∈α,所以PQ∈α;      
②因為P∈α,Q∈β,所以α∩β=PQ;
③因為AB⊆α,C∈AB,D∈AB,所以CD⊆α;
④因為AB⊆α,AB⊆β,所以A∈(α∩β)且B∈(α∩β)

查看答案和解析>>

同步練習(xí)冊答案