【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為.已知點(diǎn)在拋物線上,點(diǎn)在上,是邊長為4的等邊三角形.
(1)求的值;
(2)若直線是過定點(diǎn)的一條直線,且與拋物線交于兩點(diǎn),過作的垂
線與拋物線交于兩點(diǎn),求四邊形面積的最小值.
【答案】(1)2;(2)48
【解析】分析:(1)根據(jù)拋物線定義結(jié)合平面幾何知識分析可得,則 ;(2)設(shè)出的直線方程,并與拋物線方程聯(lián)立,消整理成關(guān)于的一元二次方程,利用根與系數(shù)關(guān)系表示出的長,再利用函數(shù)知識求解最值.
詳解:
(1)由題意知 ,則.設(shè)準(zhǔn)線與軸交于點(diǎn),則,
又是邊長為4的等邊三角形, ,所以,即.
(2)設(shè)直線的方程為,設(shè),
聯(lián)立得,則,,
,
,同理得,
則四邊形的面積
,
令,
是關(guān)于的增函數(shù),
故,當(dāng)且僅當(dāng)時取得最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有10000人,其中男生7500人,女生2500人,為調(diào)查該校學(xué)生每則平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).調(diào)查部分結(jié)果如下列聯(lián)表:
男生 | 女生 | 總計 | |
每周平均體育運(yùn)動時間不超過4小時 | 35 | ||
每周平均體育運(yùn)動時間超過4小時 | 30 | ||
總計 | 200 |
(1)完成上述每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”;
(2)已知在被調(diào)查的男生中,有5名數(shù)學(xué)系的學(xué)生,其中有2名學(xué)生每周平均體育運(yùn)動時間超過4小時,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰有1人“每周平均體育運(yùn)動時間超過4小時”的概率.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,依逆時針次序排列,點(diǎn)的極坐標(biāo)為.
(1)求點(diǎn),,的直角坐標(biāo);
(2)設(shè)為上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(diǎn)(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x(x+1),若f(a)=-2則實(shí)數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.
(1)當(dāng)時,判斷曲線與曲線的位置關(guān)系;
(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時,求曲線上到曲線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時,,若函數(shù)恰有一個零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在復(fù)數(shù)范圍內(nèi)解方程(為虛數(shù)單位)
(2)設(shè)是虛數(shù),是實(shí)數(shù),且
(i)求的值及的實(shí)部的取值范圍;
(ii)設(shè),求證:為純虛數(shù);
(iii)在(ii)的條件下求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的個數(shù)是( )
①若直線平面,直線,則;②若直線l和平面內(nèi)的無數(shù)條直線垂直,則直線l與平面必相交;③過平面外一點(diǎn)有且只有一條直線和平面垂直;④過直線外一點(diǎn)有且只有一個平面和直線a垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com