【題目】2018年2月25日第23屆冬季奧運(yùn)會(huì)在韓國(guó)平昌閉幕,中國(guó)以1金6銀2銅的成績(jī)結(jié)束本次冬奧會(huì)的征程.某校體育愛(ài)好者協(xié)會(huì)在高三年級(jí)某班進(jìn)行了“本屆冬奧會(huì)中國(guó)隊(duì)表現(xiàn)”的滿(mǎn)意度調(diào)查(結(jié)果只有“滿(mǎn)意”和“不滿(mǎn)意”兩種),按分層抽樣從被調(diào)查的學(xué)生中隨機(jī)抽取了11人,具體的調(diào)查結(jié)果如下表:
某班 | 滿(mǎn)意 | 不滿(mǎn)意 |
男生 | 2 | 3 |
女生 | 4 | 2 |
(Ⅰ)若該班女生人數(shù)比男生人數(shù)多4人,求該班男生人數(shù)和女生人數(shù)
(Ⅱ)在該班全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿(mǎn)意態(tài)度的概率;
(Ⅲ)若從該班調(diào)查對(duì)象中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的2人中對(duì)“本屆冬奧會(huì)中國(guó)隊(duì)表現(xiàn)”滿(mǎn)意的人數(shù)為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
【答案】(1)見(jiàn)解析;(2) ;(3)見(jiàn)解析.
【解析】試題分析:(Ⅰ)設(shè)女生人數(shù)為X,男生人數(shù)為Y,由題X-Y=4 (1)
又由分層抽樣可知, (2)聯(lián)立(1)(2)可解得X,Y.
(Ⅱ)設(shè)該生持滿(mǎn)意態(tài)度為事件A則由古典概型可求;
(Ⅲ)的可能取值有0,1,2,則由超幾何分布可求的分布列及其數(shù)學(xué)期望.
試題解析:(Ⅰ)不妨設(shè)女生人數(shù)為X,男生人數(shù)為Y,則可得X-Y=4 (1)
又由分層抽樣可知, (2)
聯(lián)立(1)(2)可解得X=24,Y=20.
(Ⅱ)設(shè)該生持滿(mǎn)意態(tài)度為事件A,則基本事件的總數(shù)有11種,事件A中包含的基本事件有6種,所以
(Ⅲ)的可能取值有0,1,2
對(duì)應(yīng)的事件為從該班11名調(diào)查對(duì)象中抽取2人,2人中恰好有0人持滿(mǎn)意態(tài)度
基本事件的總數(shù)為=55,其中包含的基本事件數(shù)有種
所以
同理: ,
所以分布列為:
0 | 1 | 2 | |
P |
所以期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),證明: ;
(2)當(dāng)時(shí),函數(shù)單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中, 的中點(diǎn),將沿折起,使得平面平面.
(1)求證: ;
(2)設(shè),當(dāng)為何值時(shí),二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著全民健康運(yùn)動(dòng)的普及,每天一萬(wàn)步已經(jīng)成為一種健康時(shí)尚,某學(xué)校為了教職工能夠健康工作,在全校范圍內(nèi)倡導(dǎo)“每天一萬(wàn)步”健康走活動(dòng),學(xué)校界定一人一天走路不足4千步為“健步常人”,不少于16千步為“健步超人”,其他人為“健步達(dá)人”,學(xué)校隨機(jī)抽取抽查人36名教職工,其每天的走步情況統(tǒng)計(jì)如下:
現(xiàn)對(duì)抽查的36人采用分層抽樣的方式選出6人,從選出的6人中隨機(jī)抽取2人進(jìn)行調(diào)查.
(1)求這兩人健步走狀況一致的概率;
(2)求“健步超人”人數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)滿(mǎn)足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說(shuō)明理由;
(3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)在上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 中, 所對(duì)的邊分別為,且.
(1)求角的大;
(2)若, , 為的中點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】借助計(jì)算器填寫(xiě)下表:
0 | ||||
1 | ||||
10 | ||||
20 | ||||
30 | ||||
50 | ||||
70 | ||||
100 | ||||
150 | ||||
200 | ||||
250 | ||||
300 |
觀(guān)察表中的變化并歸納各函數(shù)遞增的規(guī)律:
(1)一次函數(shù)與冪函數(shù)之間比較得出的規(guī)律;
(2)冪函數(shù)與指數(shù)函數(shù)之間比較得出的規(guī)律;
(3)指數(shù)函數(shù)與之間比較得出的規(guī)律.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(a>b>0)經(jīng)過(guò)點(diǎn),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A(0,b),B(a,0),點(diǎn)P是橢圓C上位于第三象限的動(dòng)點(diǎn),直線(xiàn)AP、BP分別將x軸、y軸于點(diǎn)M、N,求證:|AN||BM|為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com